首页> 外文OA文献 >Robust and scalable hierarchical matrix-based fast direct solver and preconditioner for the numerical solution of elliptic partial differential equations
【2h】

Robust and scalable hierarchical matrix-based fast direct solver and preconditioner for the numerical solution of elliptic partial differential equations

机译:基于稳健和可扩展的基于层次矩阵的椭圆型偏微分方程数值解的快速直接求解器和预处理器

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This dissertation introduces a novel fast direct solver and preconditioner for the solution of block tridiagonal linear systems that arise from the discretization of elliptic partial differential equations on a Cartesian product mesh, such as the variable-coefficient Poisson equation, the convection-diffusion equation, and the wave Helmholtz equation in heterogeneous media.udThe algorithm extends the traditional cyclic reduction method with hierarchical matrix techniques. The resulting method exposes substantial concurrency, and its arithmetic operations and memory consumption grow only log-linearly with problem size, assuming bounded rank of off-diagonal matrix blocks, even for problems with arbitrary coefficient structure. The method can be used as a standalone direct solver with tunable accuracy, or as a black-box preconditioner in conjunction with Krylov methods.udThe challenges that distinguish this work from other thrusts in this active field are the hybrid distributed-shared parallelism that can demonstrate the algorithm at large-scale, full three-dimensionality, and the three stressors of the current state-of-the-art multigrid technology: high wavenumber Helmholtz (indefiniteness), high Reynolds convection (nonsymmetry), and high contrast diffusion (inhomogeneity).udNumerical experiments corroborate the robustness, accuracy, and complexity claims and provide a baseline of the performance and memory footprint by comparisons with competing approaches such as the multigrid solver hypre, and the STRUMPACK implementation of the multifrontal factorization with hierarchically semi-separable matrices. The companion implementation can utilize many thousands of cores of Shaheen, KAUST's Haswell-based Cray XC-40 supercomputer, and compares favorably with other implementations of hierarchical solvers in terms of time-to-solution and memory consumption.
机译:本文介绍了一种新颖的快速直接求解器和预处理器,用于解决由笛卡尔积网格上的椭圆偏微分方程离散化而产生的块三对角线性系统,例如变系数泊松方程,对流扩散方程和 ud该算法使用层次矩阵技术扩展了传统的循环约简方法。所得到的方法暴露了实质性的并发性,并且即使对于具有任意系数结构的问题,假设非对角矩阵块的有界秩,其算法运算和内存消耗也仅随问题大小成对数线性增长。该方法可以用作具有可调精度的独立直接求解器,也可以与Krylov方法一起用作黑盒预处理器。 ud使这项工作与这一活跃领域中其他重点不同的挑战是混合分布式共享并行性,它可以在大规模,完整的三维空间中演示该算法,以及当前最新的多网格技术的三个压力源:高波数亥姆霍兹(不确定性),高雷诺对流(非对称性)和高对比度扩散(不均匀性) ) ud数字实验通过与竞争方法(例如多网格求解器hypre和具有分层半可分离矩阵的多前沿分解的STRUMPACK实现)进行比较,证实了鲁棒性,准确性和复杂性要求,并提供了性能和内存占用量的基线。伴随的实现可以利用KAUST基于Haswell的Cray XC-40超级计算机Shaheen的数千个内核,并且在解决时间和内存消耗方面与分层求解器的其他实现相比具有优势。

著录项

  • 作者

    Chavez Gustavo Ivan;

  • 作者单位
  • 年度 2017
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号