首页> 外文OA文献 >Increased stability and breakdown of brain effective connectivity during slow-wave sleep: mechanistic insights from whole-brain computational modelling
【2h】

Increased stability and breakdown of brain effective connectivity during slow-wave sleep: mechanistic insights from whole-brain computational modelling

机译:慢波睡眠时增加稳定性并破坏大脑有效连接性:全脑计算模型的机理见解

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Recent research has found that the human sleep cycle is characterised by changes in spatiotemporal patterns of brain activity. Yet, we are still missing a mechanistic explanation of the local neuronal dynamics underlying these changes. We used whole-brain computational modelling to study the differences in global brain functional connectivity and synchrony of fMRI activity in healthy humans during wakefulness and slow-wave sleep. We applied a whole-brain model based on the normal form of a supercritical Hopf bifurcation and studied the dynamical changes when adapting the bifurcation parameter for all brain nodes to best match wakefulness and slow-wave sleep. Furthermore, we analysed differences in effective connectivity between the two states. In addition to significant changes in functional connectivity, synchrony and metastability, this analysis revealed a significant shift of the global dynamic working point of brain dynamics, from the edge of the transition between damped to sustained oscillations during wakefulness, to a stable focus during slow-wave sleep. Moreover, we identified a significant global decrease in effective interactions during slow-wave sleep. These results suggest a mechanism for the empirical functional changes observed during slow-wave sleep, namely a global shift of the brain's dynamic working point leading to increased stability and decreased effective connectivity.
机译:最近的研究发现,人类睡眠周期的特征是大脑活动的时空变化。然而,我们仍然缺少对这些变化基础的局部神经元动力学的机械解释。我们使用全脑计算模型研究了清醒和慢波睡眠中健康人的整体脑功能连通性和功能磁共振成像活动同步性的差异。我们基于超临界Hopf分叉的正常形式应用了全脑模型,并研究了为所有脑节点调整分叉参数以最佳地匹配清醒和慢波睡眠时的动力学变化。此外,我们分析了两种状态之间有效连接的差异。除了功能连接性,同步性和亚稳定性方面的重大变化之外,该分析还揭示了大脑动力学的全局动态工作点的显着变化,从清醒时阻尼衰减到持续振荡之间的过渡边缘,到慢速运动期间的稳定焦点。挥手入睡。此外,我们发现慢波睡眠期间有效相互作用的总体显着下降。这些结果表明,在慢波睡眠期间观察到的经验性功能变化的机制,即大脑动态工作点的整体转移导致稳定性增加和有效连接性降低。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号