首页> 外文OA文献 >Learning to make collective decisions: the impact of confidence escalation.
【2h】

Learning to make collective decisions: the impact of confidence escalation.

机译:学会做出集体决策:信心升级的影响。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Little is known about how people learn to take into account others' opinions in joint decisions. To address this question, we combined computational and empirical approaches. Human dyads made individual and joint visual perceptual decision and rated their confidence in those decisions (data previously published). We trained a reinforcement (temporal difference) learning agent to get the participants' confidence level and learn to arrive at a dyadic decision by finding the policy that either maximized the accuracy of the model decisions or maximally conformed to the empirical dyadic decisions. When confidences were shared visually without verbal interaction, RL agents successfully captured social learning. When participants exchanged confidences visually and interacted verbally, no collective benefit was achieved and the model failed to predict the dyadic behaviour. Behaviourally, dyad members' confidence increased progressively and verbal interaction accelerated this escalation. The success of the model in drawing collective benefit from dyad members was inversely related to confidence escalation rate. The findings show an automated learning agent can, in principle, combine individual opinions and achieve collective benefit but the same agent cannot discount the escalation suggesting that one cognitive component of collective decision making in human may involve discounting of overconfidence arising from interactions.
机译:人们如何在联合决策中学习如何考虑他人的意见知之甚少。为了解决这个问题,我们结合了计算方法和经验方法。人类二分体做出了个人和共同的视觉感知决定,并对他们对这些决定的信心进行了评估(数据先前已发表)。我们训练了一个增强型(时间差异)学习代理来获取参与者的置信度,并通过找到使模型决策的准确性最大化或最大程度地符合经验的二元决策的策略来学习得出二元决策。当在没有言语互动的情况下以视觉方式共享信心时,RL特工成功地捕获了社交学习。当参与者在视觉上交换信心并进行口头交流时,无法获得集体利益,并且该模型无法预测二元行为。行为上,二元成员的信心逐渐增强,言语互动加速了这种升级。该模型在从二元成员中获得集体利益的成功与信心提升率成反比。研究结果表明,自动学习的代理人原则上可以结合个人意见并获得集体利益,但同一代理人不能抵消升级的后果,这表明人的集体决策中的一个认知成分可能涉及对因互动而产生的过度自信的抵消。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号