首页> 外文OA文献 >Caractérisation des performances énergétiques des systèmes thermiques innovants pour le bâtiment au travers d'essais de courte durée en régime dynamique
【2h】

Caractérisation des performances énergétiques des systèmes thermiques innovants pour le bâtiment au travers d'essais de courte durée en régime dynamique

机译:通过短期动态测试表征建筑物创新热系统的能源性能

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Solar thermal systems combined with a backup system such as a boiler, a heat pump or incorporating an absorption chiller, can play an important role in reducing buildings energy consumption for heating, cooling and hot water production needs. In this sense, characterizing the energy performance of thermal systems is crucial.Currently available methods of system characterization are either based on several separate physical tests of system components to be evaluated, which do not take into account the real interactions between them, or on physical models that can be complex and difficult to identify especially because systems nowadays are compact and prefabricated in the factory. Due to the lack of a reliable method to estimate the performance of solar thermal systems before their integration into buildings, their market faces a lot of impediment to be developed.In this context, it becomes essential to develop a generic methodology that can be applied to different types of systems which overcomes the difficulties encountered by the current ones.The proposed evaluation approach in this manuscript is composed of four main steps: determining a test sequence, testing the system in a semi-virtual test bench according to predetermined sequence, data acquisition and identifying an artificial neural network (ANN) of the system and finally the model simulation in order to estimate the system consumption in the desired boundary condition. Using a completely "black box" model of the whole system using the ANN makes the methodology totally "non-intrusive". No prior knowledge about the systems internal parameters (yields, thermal conductivities, regulation etc.) is necessary to apply the proposed approach.The methodology validation was performed through several numerical experiments for seven systems coming from three different typologies. During the validation process, ANN estimates were compared with calculations of physical models in several different conditions (quality of building, climate and collector area). The developed approach was applied to five real systems as well. The application results allowed the confirmation of the methodology relevance.
机译:太阳能热系统与备用系统(例如锅炉,热泵或吸收式制冷机)相结合,可以在减少建筑物用于供暖,制冷和热水生产的能源消耗方面发挥重要作用。从这个意义上讲,表征热系统的能量性能至关重要。当前可用的系统表征方法要么基于要评估的系统组件的几个单独的物理测试,而不考虑它们之间的实际相互作用,要么基于物理可能非常复杂且难以识别的模型,特别是因为当今的系统非常紧凑,并且在工厂预制。由于缺乏可靠的方法来评估太阳能热系统集成到建筑物中之前的性能,因此其市场面临许多障碍,在这种情况下,开发一种可应用于本文提出的评估方法包括四个主要步骤:确定测试顺序,按照预定顺序在半虚拟测试台中测试系统,数据采集并识别系统的人工神经网络(ANN),最后进行模型仿真,以估计所需边界条件下的系统消耗。使用人工神经网络在整个系统中使用完全“黑匣子”模型,使该方法完全“非侵入式”。无需事先了解系统内部参数(产率,热导率,调节率等)即可应用该方法。方法验证是通过对来自三种不同类型的七个系统的几次数值实验进行的。在验证过程中,将人工神经网络的估计值与几种不同条件(建筑质量,气候和集热区)的物理模型计算结果进行了比较。所开发的方法也被应用于五个实际系统。应用结果可以确认方法的相关性。

著录项

  • 作者

    Lazrak Amine;

  • 作者单位
  • 年度 2015
  • 总页数
  • 原文格式 PDF
  • 正文语种 fr
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号