首页> 外文OA文献 >Synthèse de nanocomposites cœur-coquille silicium carbone par pyrolyse laser double étage : application à l’anode de batterie lithium-ion
【2h】

Synthèse de nanocomposites cœur-coquille silicium carbone par pyrolyse laser double étage : application à l’anode de batterie lithium-ion

机译:二级激光热解合成碳硅核-壳纳米复合材料:在锂离子电池负极中的应用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The replacement of carbon graphite, the commercial anode material in Li-ion batteries, by silicon is one of the most promising strategies to increase the capacity of anode in these devices. However, micrometric silicon suffers from strong degradation effect while cycling. The volume expansion of the lithiated particles and the direct contact between the active material and the solvents induce the continuous formation and pulverization of a solid electrolyte interphase (SEI) leading to the rapid fading of the capacity. Many research groups suggest decreasing the size of the particle to the nanoscale where pulverization of the particles is almost inexistent. Furthermore, the formation of a carbon shell around these silicon nanoparticles is cited as the most efficient way to isolate the material from the direct contact with the solvent. The main issue is to obtain these core shell nanocomposites with a process able to meet industrial requirement.The Nanometric Structure Laboratory (LEDNA) is experimented in the synthesis of nanomaterial thanks to the gas phase laser pyrolysis method. This versatile process is characterized by a high yield of production and permits an efficient control over the reaction parameters. In order to obtain core shell structures, a new reactor has been developed by the combination of two stages of reaction. Thanks to this original setup, crystalline silicon cores covered or not with a carbon shell were achieved in one step for the first time. Likewise, amorphous cores were covered with a carbon shell, leading to the synthesis of a novel nanocomposite. Microscopic study reveals that these materials are obtained in a chain-like structure that can be beneficial to the electronic and ionic conduction properties. The carbonaceous compound were characterized by Raman spectroscopy and appeared to be non-graphitic sp2 rich species known in the literature as basic structural units (BSU). Auger electron spectroscopy study highlights the homogeneity of the carbon covering, in particular over smaller silicon cores. Neutron diffraction showed that the amorphous silicon cores covered with carbon are protected against passive oxidation unlike bare amorphous cores.The nanocomposites were used as anode materials in lithium-metal coin cell configuration. A cyclic voltammetry study highlights that crystalline silicon cores embedded into carbon need many sweeps before their full lithiation whereas amorphous core shell nanocomposites deeply lithiated from the first sweep, a phenomena yet not described in the literature. A potential resolved electronic impedance spectroscopy technic was used to determine the main degradation process of the core shell materials. We showed that the capacity fading can be mainly attributed to SEI dissolution and reformation through cycling, obstructing the porous structure of the electrode and limiting the cyclability. Finally, galvanostatically tested the core-shell nanocomposites reveal enhanced performance compared to graphite carbon. At the high charge/discharge rate of 2C, hardly reachable to the commercial anode material, the amorphous core-shell nanocomposite was cycled up to 500 cycles while maintaining a high capacity of 800 mAh.g-1 and outstanding coulombic efficiency of 99,99 %.
机译:用硅代替锂离子电池中商用的阳极材料碳石墨是增加这些设备中阳极容量的最有希望的策略之一。然而,微米级硅在循环时遭受强烈的降解作用。锂化颗粒的体积膨胀以及活性材料和溶剂之间的直接接触会导致固体电解质中间相(SEI)的连续形成和粉碎,从而导致容量快速衰减。许多研究小组建议将颗粒尺寸减小到几乎不存在粉化的纳米级。此外,在这些硅纳米颗粒周围形成碳壳被认为是将材料与溶剂直接接触隔离的最有效方法。主要问题是获得能够满足工业需求的方法的核壳纳米复合材料。借助气相激光热解方法,纳米结构实验室(LEDNA)被用于合成纳米材料。这种通用的方法的特征在于高产率,并允许对反应参数的有效控制。为了获得核壳结构,已经通过两个反应阶段的组合开发了新的反应器。得益于这种原始设置,首次实现了用碳壳覆盖或不覆盖碳壳的晶体硅芯。同样,无定形核被碳壳覆盖,导致合成了新型纳米复合材料。显微研究表明,这些材料是以链状结构获得的,这可能有利于电子和离子传导性能。碳质化合物通过拉曼光谱法进行了表征,并且似乎是非石墨sp2丰富的物种,在文献中称为基本结构单元(BSU)。俄歇电子能谱研究突出了碳覆盖物的均匀性,特别是在较小的硅核上。中子衍射表明,与裸露的无定形核不同,被碳覆盖的无定形硅核具有防止被动氧化的作用。纳米复合材料被用作锂金属纽扣电池结构的阳极材料。循环伏安法研究强调,嵌入碳中的结晶硅核在其完全锂化之前需要进行多次扫描,而非晶核核壳纳米复合材料在第一次扫描中就被深锂化了,这一现象尚未在文献中描述。一种潜在的分辨电子阻抗谱技术被用来确定核壳材料的主要降解过程。我们表明,容量下降主要归因于SEI通过循环的溶解和重整,从而阻碍了电极的多孔结构并限制了可循环性。最后,经恒电流测试的核-壳纳米复合材料比石墨碳具有更高的性能。在2C的高充电/放电速率下,市售阳极材料几乎无法达到这一要求,无定形核-壳纳米复合材料可循环使用500次,同时保持800 mAh.g-1的高容量和99,99的出色库仑效率%。

著录项

  • 作者

    Sourice Julien;

  • 作者单位
  • 年度 2015
  • 总页数
  • 原文格式 PDF
  • 正文语种 fr
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号