Multiple antennas techniques are an interesting solution to increase throughput without increasing the bandwidth. This is an advantage in a context where the proliferation of users and services leads to a saturation of spectrum. However, the systems based on diversity raise new challenges for their integration into terminals. The work presented in this thesis is to consider jointly the performance of multi-antennas systems and integration into terminals constraints. Developed systems operate in two bands LTE: 790-862 MHz and 2.5-2.69 GHz, and cover also for some of them the upper part of the band TVWS (TVWhite Space): 700-790 MHz to provide cognitive radio applications. The first study is concentrated on designing an efficient system while maintaining a reasonable size. The proposed system is integrated into the terminals emerging in the market today such as mini-tablets, the tablet-phone hybrid or laptop. Very satisfactory performance in terms of bands and isolation are achieved. Aiming the size reduction, we propose an alternative compact system providing acceptable performances. For this purpose, three prototypes are proposed where the last could be integrated into a mobile phone. For all systems, we have evaluated the diversity performances in terms of correlation coefficient and Mean Effective Gain. It has been founded that the systems provide good diversity performances even if the terminal's position is changed during the communication. Moreover, the influence on the antennas performances with a presence of users is studied. The results show that these systems are suitable for LTE and can be used for MIMO wireless communications.
展开▼