首页> 外文OA文献 >Gestion conjointe de ressources de communication et de calcul pour les réseaux sans fils à base de cloud
【2h】

Gestion conjointe de ressources de communication et de calcul pour les réseaux sans fils à base de cloud

机译:基于云的无线网络的通信和计算资源的联合管理

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Mobile Edge Cloud brings the cloud closer to mobile users by moving the cloud computational efforts from the internet to the mobile edge. We adopt a local mobile edge cloud computing architecture, where small cells are empowered with computational and storage capacities. Mobile users’ offloaded computational tasks are executed at the cloud-enabled small cells. We propose the concept of small cells clustering for mobile edge computing, where small cells cooperate in order to execute offloaded computational tasks. A first contribution of this thesis is the design of a multi-parameter computation offloading decision algorithm, SM-POD. The proposed algorithm consists of a series of low complexity successive and nested classifications of computational tasks at the mobile side, leading to local computation, or offloading to the cloud. To reach the offloading decision, SM-POD jointly considers computational tasks, handsets, and communication channel parameters. In the second part of this thesis, we tackle the problem of small cell clusters set up for mobile edge cloud computing for both single-user and multi-user cases. The clustering problem is formulated as an optimization that jointly optimizes the computational and communication resource allocation, and the computational load distribution on the small cells participating in the computation cluster. We propose a cluster sparsification strategy, where we trade cluster latency for higher system energy efficiency. In the multi-user case, the optimization problem is not convex. In order to compute a clustering solution, we propose a convex reformulation of the problem, and we prove that both problems are equivalent. With the goal of finding a lower complexity clustering solution, we propose two heuristic small cells clustering algorithms. The first algorithm is based on resource allocation on the serving small cells where tasks are received, as a first step. Then, in a second step, unserved tasks are sent to a small cell managing unit (SCM) that sets up computational clusters for the execution of these tasks. The main idea of this algorithm is task scheduling at both serving small cells, and SCM sides for higher resource allocation efficiency. The second proposed heuristic is an iterative approach in which serving small cells compute their desired clusters, without considering the presence of other users, and send their cluster parameters to the SCM. SCM then checks for excess of resource allocation at any of the network small cells. SCM reports any load excess to serving small cells that re-distribute this load on less loaded small cells. In the final part of this thesis, we propose the concept of computation caching for edge cloud computing. With the aim of reducing the edge cloud computing latency and energy consumption, we propose caching popular computational tasks for preventing their re-execution. Our contribution here is two-fold: first, we propose a caching algorithm that is based on requests popularity, computation size, required computational capacity, and small cells connectivity. This algorithm identifies requests that, if cached and downloaded instead of being re-computed, will increase the computation caching energy and latency savings. Second, we propose a method for setting up a search small cells cluster for finding a cached copy of the requests computation. The clustering policy exploits the relationship between tasks popularity and their probability of being cached, in order to identify possible locations of the cached copy. The proposed method reduces the search cluster size while guaranteeing a minimum cache hit probability.
机译:通过将云计算工作从互联网转移到移动边缘,移动边缘云使云更靠近移动用户。我们采用本地移动边缘云计算架构,其中的小型蜂窝具有计算和存储功能。移动用户卸载的计算任务在启用了云的小型单元中执行。我们提出了用于移动边缘计算的小型蜂窝群集的概念,其中小型蜂窝进行协作以执行卸载的计算任务。本文的首要贡献是多参数计算卸载决策算法SM-POD的设计。所提出的算法由移动端的一系列低复杂度的计算任务连续和嵌套分类组成,从而导致本地计算或卸载到云中。为了达成卸载决策,SM-POD共同考虑了计算任务,手机和通信信道参数。在本文的第二部分中,我们解决了针对单用户和多用户情况为移动边缘云计算设置的小型小区集群的问题。聚类问题被表述为一种优化,可以共同优化计算和通信资源分配以及参与计算群集的小型小区上的计算负载分布。我们提出了集群稀疏化策略,在该策略中,我们以集群延迟为代价来提高系统能效。在多用户情况下,优化问题不是凸面的。为了计算聚类解,我们提出了该问题的凸重构,并证明了这两个问题是等效的。为了找到一种较低复杂度的聚类解决方案,我们提出了两种启发式小小区聚类算法。作为第一步,第一算法基于在接收任务的服务小小区上的资源分配。然后,在第二步中,将未提供的任务发送到小型单元管理单元(SCM),该单元设置用于执行这些任务的计算群集。该算法的主要思想是在服务小型小区和SCM端的任务调度,以提高资源分配效率。提议的第二种启发式方法是一种迭代方法,其中服务中的小型小区在不考虑其他用户的情况下计算其所需集群,并将其集群参数发送给SCM。然后,SCM在任何网络小型小区中检查是否有过多的资源分配。 SCM报告为服务小型小区而产生的任何多余负载,这些负载会将这种负载重新分配给负载较小的小型小区。在本文的最后,我们提出了边缘云计算的计算缓存概念。为了减少边缘云计算的延迟和能耗,我们建议缓存流行的计算任务以防止其重新执行。我们在这里的贡献有两个方面:首先,我们提出了一种基于请求流行度,计算大小,所需的计算能力和小型单元连接性的缓存算法。该算法可识别请求,这些请求如果被缓存和下载而不是重新计算,将增加计算缓存的能量并节省延迟。其次,我们提出了一种用于建立搜索小蜂窝集群以查找请求计算的缓存副本的方法。群集策略利用任务受欢迎程度与它们被缓存的概率之间的关系,以便识别缓存副本的可能位置。所提出的方法在保证最小的缓存命中概率的同时减小了搜索簇的大小。

著录项

  • 作者

    Oueis Jessica;

  • 作者单位
  • 年度 2016
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号