首页> 外文OA文献 >Finite Data Performance Analysis of MVDR Beamformer with and without Spatial Smoothing
【2h】

Finite Data Performance Analysis of MVDR Beamformer with and without Spatial Smoothing

机译:带有和不带有空间平滑的MVDR波束形成器的有限数据性能分析

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Recently, the performance of a minimum variance distortionless response (MVDR) beamformer has been exten-sively studied for the case when a true or asymptotic covariance matrix is available. In practical situations, however, we only have a finite number of snapshots of data from which the array covariance matrix can be estimated. In this paper, we analyze the finite-data performance of this beamformer with and without spatial smoothing, using first-order perturbation theory. In particular, we develop expressions for the mean values of the power gain in any direction of interest, the output power and the norm of the weight-error vector, as a function of the number of snapshots and the number of smoothing steps. We show that, in general, the smoothing, in addition to decorrelating the sources, can also dlleviate the effects of finite-data perturbations.Next, we reduce the above expressions to the case when no spatial smoothing is used. These expressions are valid for an arbitrary array and for arbitrarily correlated signals. For this case, we also develop an expression for the variance of the power gain. We simplify these expressions for a single interference case to show explicitly how the SNR, spacing of the interference from the desired signal and the correlation between them influence the beamformer performance.Simulations are used to verify the usefulness of the theoretical expressions and the results show an excellent agreement with predicted results.
机译:近来,对于真实或渐近协方差矩阵可用的情况,最小方差无失真响应(MVDR)波束形成器的性能已得到广泛研究。但是,在实际情况下,我们只有有限数量的数据快照,可以从中估计数组协方差矩阵。在本文中,我们使用一阶扰动理论分析了在有或没有空间平滑的情况下该波束形成器的有限数据性能。特别是,我们根据快照数量和平滑步骤数量来开发任意感兴趣方向上的功率增益平均值,输出功率和权重误差向量范数的表达式。我们证明,一般而言,平滑处理除了对源进行去相关之外,还可以减轻有限数据扰动的影响。接下来,我们将上述表达式简化为不使用空间平滑处理的情况。这些表达式对于任意数组和任意相关的信号均有效。对于这种情况,我们还为功率增益的方差开发了一个表达式。我们简化了单个干扰情况下的这些表达式,以明确显示出SNR,所需信号的干扰间隔以及它们之间的相关性如何影响波束形成器的性能。通过仿真验证了理论表达式的有效性,结果表明与预期结果极好的一致性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号