首页> 外文OA文献 >Note on the locally product and almost locally product structures
【2h】

Note on the locally product and almost locally product structures

机译:注意本地产品和几乎本地产品的结构

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This paper is concerned with a study of some of the properties of locally product and almost locally product structures on a differentiable manifold X n of class C k . Every locally product space has certain almost locally product structures which transform the local tangent space to X n at an arbitrary point P in a set fashion: this is studied in Theorem (2.2). Theorem (2.3) considers the nature of transformations that exist between two co-ordinate systems at a point whenever an almost locally product structure has the same local representation in each of these co-ordinate systems. A necessary and sufficient condition for X n to be a locally product manifold is obtained in terms of the pseudo-group of co-ordinate transformations on X n and the subpseudo-groups [cf., Theoren (2.1)]. Section 3 is entirely devoted to the study of integrable almost locally product structures.
机译:本文涉及对C k类可微流形X n上局部产物和几乎局部产物结构的一些性质的研究。每个局部乘积空间都具有某些几乎局部的乘积结构,这些结构以设定的方式在任意点P上将局部切线空间转换为X n:在定理(2.2)中进行了研究。定理(2.3)考虑了在每个坐标系统中几乎本地的产品结构在每个坐标系统中具有相同的局部表示时,两个坐标系统之间存在的转换的性质。根据X n上的坐标变换的伪组和亚伪组,获得了X n成为局部乘积流形的必要和充分条件[参见,Theoren(2.1)]。第三部分完全致力于研究几乎可本地化的产品结构。

著录项

  • 作者

    Nagaraj Muppinaiya;

  • 作者单位
  • 年度 1967
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号