首页> 外文OA文献 >Enhancing the mechanical and biological performance of a metallic biomaterial for orthopedic applications through changes in the surface oxide layer by nanocrystalline surface modification
【2h】

Enhancing the mechanical and biological performance of a metallic biomaterial for orthopedic applications through changes in the surface oxide layer by nanocrystalline surface modification

机译:通过纳米晶表面改性改变表面氧化物层,增强骨科应用的金属生物材料的机械和生物学性能

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Nanostructured metals are a promising class of biomaterials for application in orthopedics to improve the mechanical performance and biological response for increasing the life of biomedical implants. Surface mechanical attrition treatment (SMAT) is an efficient way of engineering nanocrystalline surfaces on metal substrates. In this work, 316L stainless steel (SS), a widely used orthopedic biomaterial, was subjected to SMAT to generate a nanocrystalline surface. Surface nanocrystallization modified the nature of the oxide layer present on the surface. It increased the corrosion-fatigue strength in saline by 50%. This increase in strength is attributed to a thicker oxide layer, residual compressive stresses, high strength of the surface layer, and lower propensity for intergranular corrosion in the nanocrystalline layer. Nanocrystallization also enhanced osteoblast attachment and proliferation. Intriguingly, wettability and surface roughness, the key parameters widely acknowledged for controlling the cellular response remained unchanged after nanocrystallization. The observed cellular behavior is explained in terms of the changes in electronic properties of the semiconducting passive oxide film present on the surface of 316L SS. Nanocrystallization increased the charge carrier density of the n-type oxide film likely preventing denaturation of the adsorbed cell-adhesive proteins such as fibronectin. In addition, a net positive charge developed on the otherwise neutral oxide layer, which is known to facilitate cellular adhesion. The role of changes in the electronic properties of the oxide films on metal substrates is thus highlighted in this work. This study demonstrates the advantages of nanocrystalline surface modification by SMAT for processing metallic biomaterials used in orthopedic implants.
机译:纳米结构金属是一类有前途的生物材料,可用于整形外科,以改善机械性能和生物响应,从而延长生物医学植入物的寿命。表面机械磨损处理(SMAT)是在金属基板上工程化纳米晶表面的有效方法。在这项工作中,对广泛使用的骨科生物材料316L不锈钢(SS)进行了SMAT处理,以生成纳米晶表面。表面纳米结晶改变了表面上存在的氧化物层的性质。它使盐水中的腐蚀疲劳强度提高了50%。强度的增加归因于较厚的氧化物层,残余压应力,表面层的高强度以及纳米晶层中较低的晶间腐蚀倾向。纳米结晶还增强了成骨细胞的附着和增殖。令人着迷的是,润湿性和表面粗糙度是纳米晶化后保持控制细胞响应的公认关键参数。根据存在于316L SS表面的半导体无源氧化膜的电子特性变化来解释观察到的细胞行为。纳米晶化增加了n型氧化膜的电荷载流子密度,这可能阻止了吸附的细胞粘附蛋白(如纤连蛋白)的变性。另外,在原本为中性的氧化物层上会产生净正电荷,已知该净正电荷有助于细胞粘附。因此,这项工作突出了金属基板上氧化膜的电子性能变化的作用。这项研究证明了通过SMAT进行纳米晶体表面改性的优势,可用于加工整形外科植入物中使用的金属生物材料。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号