首页> 外文期刊>Journal of Computing and Information Science in Engineering >Powder Mixed Electric Discharge Machining: An Innovative Surface Modification Technique to Enhance Fatigue Performance and Bioactivity of β-Ti Implant for Orthopedics Application
【24h】

Powder Mixed Electric Discharge Machining: An Innovative Surface Modification Technique to Enhance Fatigue Performance and Bioactivity of β-Ti Implant for Orthopedics Application

机译:粉末混合放电加工:一种创新的表面改性技术,可增强用于骨科的β-Ti植入物的疲劳性能和生物活性

获取原文
获取原文并翻译 | 示例

摘要

The development of surface modification technique has been the subject of the studies regarding the fatigue performance and biological characterization of the modified layers. In the present research work, powder mixed electric discharge machining (PMEDM) a novel nonconventional machining technique has been proposed for surface modification of β-Ti implant for orthopedics application. The surface topography and morphology like roughness, surface cracks, and recast layer thickness of each of the machined specimens were investigated using Mitutoyo surface roughness tester and field-emission scanning electron microscopy (FE-SEM), respectively. This study aims to investigate the effect of surface characteristics of PMEDM process on the fatigue performance and bioactivity of β-Ti implants and moreover a comparative analysis is made on the fatigue performance and biological activity of specimens machined with presently used machining methods like electric discharge machining (EDM) and mechanical polishing. The high cycle fatigue (HCF) performance of polished specimens was superior and had no adverse effect of microstructure on fatigue endurance. As expected, the fatigue behavior of β-Ti implant-based alloy, after undergoing EDM treatment, is poorly observed due to the mi-crorough surface. The fatigue performance is dependent on microstructure and surface roughness of the specimens. Subsequent PMEDM process significantly improves the fatigue endurance of β-Ti implant-based alloy specimens. PMEDMed surface with micro-, sub-micro-, and nano-structured topography exhibited excellent bioactivity and improved biocompatibility. PMEDMed surface enabled better adhesion and growth of MG-63 when compared with the polished and EDMed substrate. Furthermore, the differentiation results indicated that a combination of nanoscale featured submicrorough PMEDMed surface promotes various osteoblast differentiation activities like alkaline phosphatase (ALP) activity, osteocalcin production, the local factor osteoprotegerin, which inhibits osteoclastogenesis.
机译:表面改性技术的发展已经成为有关改性层的疲劳性能和生物学特性的研究主题。在当前的研究工作中,已经提出了粉末混合放电加工(PMEDM)一种新颖的非常规加工技术,用于整形外科应用的β-Ti植入物的表面改性。分别使用Mitutoyo表面粗糙度测试仪和场发射扫描电子显微镜(FE-SEM)研究了每个机加工试样的表面形貌和形态,如粗糙度,表面裂纹和重铸层厚度。这项研究旨在研究PMEDM工艺的表面特性对β-Ti植入物的疲劳性能和生物活性的影响,此外,还对采用当前加工方法(如放电加工)加工的试样的疲劳性能和生物活性进行了比较分析。 (EDM)和机械抛光。抛光试样的高循环疲劳(HCF)性能优异,并且对疲劳强度没有微观结构的不利影响。不出所料,由于表面粗糙,在进行EDM处理后,很难观察到β-Ti植入物基合金的疲劳行为。疲劳性能取决于试样的微观结构和表面粗糙度。随后的PMEDM工艺可显着提高基于β-Ti植入物的合金样品的疲劳强度。具有微,亚微和纳米结构形貌的PMEDMed表面表现出出色的生物活性和改善的生物相容性。与抛光和电火花加工的基材相比,PMEDMed表面能使MG-63更好地粘附和生长。此外,分化结果表明,纳米级特征的亚微米粗糙PMEDMed表面的组合可促进各种成骨细胞分化活性,例如碱性磷酸酶(ALP)活性,骨钙素生成,局部因子骨保护素,抑制破骨细胞生成。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号