首页> 外文OA文献 >Multivariate PLS Modeling of Apicomplexan FabD-Ligand Interaction Space for Mapping Target-Specific Chemical Space and Pharmacophore Fingerprints
【2h】

Multivariate PLS Modeling of Apicomplexan FabD-Ligand Interaction Space for Mapping Target-Specific Chemical Space and Pharmacophore Fingerprints

机译:Apicomplexan FabD-配体相互作用空间的多元PLS建模,用于定位目标特定的化学空间和药理学指纹

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Biomolecular recognition underlying drug-target interactions is determined by both binding affinity and specificity. Whilst, quantification of binding efficacy is possible, determining specificity remains a challenge, as it requires affinity data for multiple targets with the same ligand dataset. Thus, understanding the interaction space by mapping the target space to model its complementary chemical space through computational techniques are desirable. In this study, active site architecture of FabD drug target in two apicomplexan parasites viz. Plasmodium falciparum (PfFabD) and Toxoplasma gondii (TgFabD) is explored, followed by consensus docking calculations and identification of fifteen best hit compounds, most of which are found to be derivatives of natural products. Subsequently, machine learning techniques were applied on molecular descriptors of six FabD homologs and sixty ligands to induce distinct multivariate partial-least square models. The biological space of FabD mapped by the various chemical entities explain their interaction space in general. It also highlights the selective variations in FabD of apicomplexan parasites with that of the host. Furthermore, chemometric models revealed the principal chemical scaffolds in PfFabD and TgFabD as pyrrolidines and imidazoles, respectively, which render target specificity and improve binding affinity in combination with other functional descriptors conducive for the design and optimization of the leads.
机译:潜在的药物-靶标相互作用的生物分子识别是由结合亲和力和特异性共同决定的。虽然可以量化结合功效,但是确定特异性仍然是一个挑战,因为它需要具有相同配体数据集的多个靶标的亲和力数据。因此,期望通过计算技术通过映射目标空间以对其互补化学空间建模来理解相互作用空间。在这项研究中,FabD药物靶标在两个apicomplexan寄生虫中的活性位点结构。探索了恶性疟原虫(PfFabD)和弓形虫(TgFabD),然后通过共识对接计算和鉴定了15种最佳命中化合物,其中大多数是天然产物的衍生物。随后,将机器学习技术应用于六个FabD同源物和六十个配体的分子描述符,以诱导不同的多元偏最小二乘模型。各种化学实体所映射的FabD的生物空间通常解释了它们的相互作用空间。它还强调了apiplexplexan寄生虫的FabD与宿主的选择性差异。此外,化学计量学模型揭示了PfFabD和TgFabD中的主要化学支架分别为吡咯烷和咪唑,它们与其他功能描述符相结合,可提供靶标特异性并提高结合亲和力,有利于引线的设计和优化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号