首页> 外文OA文献 >Learning Environmental Knowledge from Task-Based Human-Robot Dialog
【2h】

Learning Environmental Knowledge from Task-Based Human-Robot Dialog

机译:从基于任务的人机对话中学习环境知识

摘要

This paper presents an approach for learning environmental knowledge from task-based human-robot dialog. Previous approaches to dialog use domain knowledge to constrain the types of language people are likely to use. In contrast, by introducing a joint probabilistic model over speech, the resulting semantic parse and the mapping from each element of the parse to a physical entity in the building (e.g., grounding), our approach is flexible to the ways that untrained people interact with robots, is robust to speech to text errors and is able to learn referring expressions for physical locations in a map (e.g., to create a semantic map). Our approach has been evaluated by having untrained people interact with a service robot. Starting with an empty semantic map, our approach is able ask 50% fewer questions than a baseline approach, thereby enabling more effective and intuitive human robot dialog.
机译:本文提出了一种从基于任务的人机对话中学习环境知识的方法。先前的对话方法使用领域知识来限制人们可能使用的语言类型。相反,通过在语音上引入联合概率模型,由此产生的语义解析以及从解析的每个元素到建筑物中物理实体的映射(例如,接地),我们的方法对于未经培训的人与之交互的方式非常灵活机器人对语音到文本的错误具有鲁棒性,并且能够学习地图中物理位置的引用表达(例如,创建语义图)。通过让未经培训的人员与服务机器人进行交互来评估我们的方法。从一个空的语义图开始,我们的方法比基线方法提出的问题少50%,从而实现了更有效和直观的人机对话。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号