首页> 外文OA文献 >Topology and Modality: The Topological Interpretation of First-Order Modal Logic
【2h】

Topology and Modality: The Topological Interpretation of First-Order Modal Logic

机译:拓扑和模态:一阶模态逻辑的拓扑解释

摘要

As McKinsey and Tarski showed, the Stone representation theorem for Boolean algebras extends to algebras with operators to give topological semantics for (classical) propositional modal logic, in which the “necessity” operation is modeled by taking the interior of an arbitrary subset of a topological space. In this article, the topological interpretation is extended in a natural way to arbitrary theories of full first-order logic. The resulting system of S4 first-order modal logic is complete with respect to such topological semantics.
机译:正如McKinsey和Tarski所展示的那样,布尔代数的Stone表示定理扩展到带有算符的代数,以给出(经典)命题模态逻辑的拓扑语义,其中“必要性”操作是通过获取拓扑的任意子集的内部来建模的空间。在本文中,拓扑解释以一种自然的方式扩展到了完全一阶逻辑的任意理论。关于这种拓扑语义,所得的S4一阶模态逻辑系统是完整的。

著录项

  • 作者

    Awodey Steve; Kishida Kohei;

  • 作者单位
  • 年度 2008
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号