首页> 外文OA文献 >Accurate determination of optimal reflux policies for the maximum distillate problem in batch distillation
【2h】

Accurate determination of optimal reflux policies for the maximum distillate problem in batch distillation

机译:分批蒸馏中最大馏出液问题的最佳回流策略的准确确定

摘要

Abstract: u22An approach for the accurate solution of optimal control problems that arise in batch distillation is developed and demonstrated. Since the optimal control problem has a natural partitioning of control variables and state variables, we develop a nonlinear programming decomposition strategy to (1) exploit the block matrix form of the discretized differential equations that results from using collocation on finite elements, and (2) perform the optimization in the reduced space of the control variables. State variables for each finite element are determined by linearized differential equations and information is passed from element to element by chainruling the state information. In addition, the nonlinear programming strategy has a great deal of flexibility to determine control variable discontinuities and enforce a wide variety of state and control variable constraints. In this study, we also consider characteristics of the maximum batch distillate problem and show that our approach is especially useful for the optimization of detailed tray-by-tray models with tray and condenser holdups. Here we discuss two formulations: an inequality path constrained problem and the classical endpoint constrained problem. In both cases interesting and unusual optimal policies are determined and compared to current practice. Moreover, parallels are observed between optimal reflux policies for these two problems, and these are also related to findings from previous studies. To handle these problems, nonlinear programs of up to 8000 variables are solved reasonably quickly on a small workstation. Finally, it is observed that more complex batch distillation problems can be handled in a straightforward manner through this approach.u22
机译:摘要:开发并演示了一种精确解决间歇蒸馏中出现的最佳控制问题的方法。由于最优控制问题具有控制变量和状态变量的自然划分,因此我们开发了一种非线性编程分解策略,以(1)利用离散化微分方程的块矩阵形式,这是由于在有限元上使用搭配而导致的;(2)在减小的控制变量空间中执行优化。每个有限元的状态变量由线性微分方程确定,信息通过链式处理状态信息而在各个元素之间传递。另外,非线性编程策略具有很大的灵活性,可以确定控制变量的不连续性并强制执行各种状态和控制变量约束。在这项研究中,我们还考虑了最大批量馏出物问题的特征,并表明我们的方法对于优化带有塔盘和冷凝器滞留量的逐塔盘详细模型特别有用。在这里,我们讨论两个公式:不等式路径约束问题和经典终点约束问题。在这两种情况下,都会确定有趣和不寻常的最佳策略,并将其与当前实践进行比较。此外,在针对这两个问题的最佳回流策略之间观察到了相似之处,并且这也与先前研究的发现有关。为了解决这些问题,可以在小型工作站上快速解决多达8000个变量的非线性程序。最后,观察到可以通过这种方法以直接的方式处理更复杂的分批蒸馏问题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号