首页> 外文OA文献 >Tailoring device-scale properties in organic electronics: morphological, optical and electrode-interface related approaches
【2h】

Tailoring device-scale properties in organic electronics: morphological, optical and electrode-interface related approaches

机译:量身定制有机电子设备中器件规模的特性:与形态,光学和电极界面有关的方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In era of dwindling fossil fuel supplies, increasing energy demand and high rates of carbon emission, investment in the clean and renewable-energy market is now the goal of many governments. This global prospect pushes the countries to consolidate new policies and rules to increase the production of cost-effective resources and grow the deployment in renewable energy. Sunlight, wind, waves and geothermal heat are the natural energy resources that strongly contribute to our global energy consumption. Organic materials - restricted to those that have conjugated structure and exhibit semiconducting properties - have gained intense interest in research and academia, leading to efficient and commercially applicable devices. Organic photovoltaic (OPV), organic field-effect transistors (OFETs) and organic light-emitting diodes (OLEDs) are the most prominent devices in the field of organic electronics. These devices are promising due to potentially low cost, mechanical flexibility, lightweight as well as high and ease of processability from solution (such as, spin-coating, drop casting, roll painting, and ink jet printing). Significant improvements have been achieved - especially for OLEDs, which have now been commercialized for cellular telephone applications as well as high-definition television screens. For OPVs, however, inferior performance and short lifetimes hinder their successful commercialization. The work presented in this dissertation focuses on three different performance-related issues and strategies for OPVs; electrode-interface engineering, morphology tuning, and optical absorption enhancement. The work on morphology tuning is also extended and applied to OLEDs and OFETs.In chapter one, a schematic showing the organization of this dissertation is presented. Inthe same chapter, a general introduction on organic materials and thin-films is also discussed. Furthermore, the architecture and basic operation of OPV, OFET and OLED devices are considered.Chapter two discusses the possibility of fabricating new OPV devices on previously used Indium-Tin-Oxide (ITO) substrates, which went through prior device processing with popular acidic interfacial layer poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS). We show that, contrary to the concerns in the literature, only the top few nanometers of ITO are etched by PEDOT:PSS in typical device processing and storage thereafter. Conductivity losses are offset by transmission gains leading to an increased power conversion efficiencies (PCE) for PTB7-based (PTB7: poly[[4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b’]dithiophene-2,6-diyl][3-fluoro-2-[(2-ethylhexyl)carbonyl]thieno[3,4-b]thiophenediyl]]) OPVs on used ITO substrates compared to devices on fresh ITO.In chapter three, we introduce a generic morphology tuning technique with anisotropic applicability -exposure to static electric-field (E-field) gradient during the solidification of solution-processed polymeric thin-films. This technique improves the connectivity between polymer chains; by changing the E-field direction, radiative pathways in polymeric thin-films can be altered, charge transport in- and out-of-plane can be improved, and phase-separation in polymer-fullerene blends can be coarsened in the bulk and perpendicular to the substrate. In exemplary cases, we improved the hole mobility in OFETs, power conversion effciency in OPVs, and electroluminescence efficiency in OLEDs.In the last part of this dissertation, we studied the effect of using microlens array (MLA)to increase the light absorption inside the active-layer of OPVs. Our MLA approach does not hinder the fabrication of the OPV because MLA lies on the non-conductive side of the ITO glass. In chapter four, we initially investigated the effect of using MLA with 2000 nm feature size. We found that thick (P3HT:PCBM) and thin (PCDTBT:PCBM) OPVs exhibit an improved short-circuit current. This enhancement stems from the increased light path coupled with the constructive interference patterns inside the OPV photoactive layer. In chapter five, we used MLAs with smaller feature sizes. In addition to feature size of 2 micrometer, 1.5 micrometer, 1 micrometer and 0.6 micrometer MLAs were also investigated. The experimental and simulations results show agreement on an increased light absorption inside the photoactive layer; improved current-density and PCE were realized for PTB7:PCBM and PCDTBT:PCBM OPVs (w.r.t. control) using 1 micrometer and 1.5 micrometer feature size MLAs, respectively.
机译:在化石燃料供应减少,能源需求增加和碳排放率高涨的时代,对清洁和可再生能源市场的投资现已成为许多政府的目标。这种全球前景促使各国巩固新的政策和规则,以增加具有成本效益的资源的生产并扩大可再生能源的利用。阳光,风,浪和地热是自然能源,对我们的全球能源消耗有很大贡献。有机材料-仅限于具有共轭结构和表现出半导体性能的有机材料-在研究和学术界引起了浓厚的兴趣,从而产生了有效且可商业应用的设备。有机光伏(OPV),有机场效应晶体管(OFET)和有机发光二极管(OLED)是有机电子领域中最突出的器件。这些设备因其潜在的低成本,机械灵活性,轻巧以及从溶液(例如旋涂,滴铸,辊涂和喷墨印刷)的高易加工性而很有希望。已经取得了显着的进步-特别是对于OLED,现在已经将其商业化用于蜂窝电话应用以及高清电视屏幕。但是,对于OPV而言,性能差和使用寿命短会阻碍其成功商业化。本文的工作集中在与OPV的三个与性能相关的问题和策略上。电极界面工程,形态调整和光吸收增强。形态学调整的工作也得到扩展,并应用于OLED和OFET。第一章,给出了本文结构的示意图。在同一章中,还讨论了有机材料和薄膜的一般介绍。此外,还考虑了OPV,OFET和OLED器件的体系结构和基本操作。第二章讨论了在以前使用的铟锡氧化物(ITO)衬底上制造新的OPV器件的可能性,这些衬底是通过先有的常用酸性界面处理工艺进行制造的层聚(3,4-乙撑二氧噻吩):聚(苯乙烯磺酸盐)(PEDOT:PSS)。我们表明,与文献中的关注相反,PEDOT:PSS仅在其后的典型器件处理和存储中蚀刻出顶部的几纳米的ITO。传输增益会抵消电导率损耗,从而导致基于PTB7的功率转换效率(PCE)升高(PTB7:聚[[4,8-双[(2-乙基己基)氧基]苯并[1,2-b:4,与新鲜设备相比,使用过的ITO基板上的5-b']二噻吩-2,6-二基] [3-氟-2-([(2-乙基己基)羰基]噻吩并[3,4-b]噻吩二基]])OPV ITO。在第三章中,我们介绍了一种具有各向异性适用性的通用形态学调整技术-在固溶处理的聚合物薄膜固化过程中暴露于静电场(E场)梯度。该技术改善了聚合物链之间的连接性。通过改变电场方向,可以改变聚合物薄膜中的辐射路径,可以改善电荷在平面内和平面外的传输,并且可以在本体和垂直方向上粗化聚合物-富勒烯共混物中的相分离。到基板上。在示例性情况下,我们改善了OFET中的空穴迁移率,提高了OPV中的功率转换效率,以及OLED中的电致发光效率。 OPV的有源层。我们的MLA方法不会阻碍OPV的制造,因为MLA位于ITO玻璃的非导电侧。在第四章中,我们最初研究了使用特征尺寸为2000 nm的MLA的效果。我们发现厚(P3HT:PCBM)和薄(PCDTBT:PCBM)OPV表现出改善的短路电流。这种增强来自增加的光路以及OPV光敏层内部的相长干涉图样。在第五章中,我们使用了具有较小特征尺寸的MLA。除了2微米的特征尺寸外,还研究了1.5微米,1微米和0.6微米的MLA。实验和仿真结果表明,在光敏层内部增加了光吸收,结果一致。分别使用1微米和1.5微米特征尺寸的MLA,为PTB7:PCBM和PCDTBT:PCBM OPV(w.r.t.控件)实现了改进的电流密度和PCE。

著录项

  • 作者

    Ismail, Moneim Reda;

  • 作者单位
  • 年度 2015
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号