首页> 外文OA文献 >An investigation of viral fitness using statistical and computer models of Equine Infectious Anemia Virus infection
【2h】

An investigation of viral fitness using statistical and computer models of Equine Infectious Anemia Virus infection

机译:使用马传染性贫血病毒感染的统计和计算机模型进行病毒适应性调查

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Simulation or statistically based models are often used to explore the outcomes and dynamics of physical systems or scientific experiments. In this work, we consider the use of a mixed effects differential equations model and the use of a stochastic agent based model to model data from competition infection experiments of Equine Infectious Anemia Virus (EIAV). EIAV is a retrovirus that presents with a lifelong persistent infection. Vaccine development for this and other retroviruses has been impeded due to the genetic variation that the virus exhibits in the presence of host immune pressure. To assess if genetic variation has an impact on replicative capacity, variants of EIAV that differ phenotypically were competed in dual infection assays. Data from these experiments were used to develop models that are aimed at being able to detect if there are differences in replicative capacity among the variants.We first consider a mixed effects model of data from an in vivo competition assay. Parameters of the model are estimated through the use of Markov Chain Monte Carlo (MCMC) methods. In vitro competition experiments were also conducted. These experiments offer more controlled experimental conditions than the in vivo assays. We then propose an agent based computer model that is able to simulate cell free and cell associated virus spread to model the data from the in vitro competition assays. To estimate the parameters of the agent based model, a surrogate Gaussian process model is used. Finally, we propose an extension of the Gaussian process model to account for the additional variance present in stochastic computer models.
机译:仿真或基于统计的模型通常用于探索物理系统或科学实验的结果和动力学。在这项工作中,我们考虑使用混合效应微分方程模型和基于随机代理的模型来对马传染性贫血病毒(EIAV)的竞争感染实验中的数据进行建模。 EIAV是一种逆转录病毒,可终生持续感染。由于这种病毒在宿主免疫压力下表现出的遗传变异,因此阻碍了该病毒和其他逆转录病毒的疫苗开发。为了评估遗传变异是否会对复制能力产生影响,在双重感染试验中对表型不同的EIAV变异进行了竞争。来自这些实验的数据被用于开发旨在能够检测变异体之间复制能力是否存在差异的模型。我们首先考虑来自体内竞争试验的数据的混合效应模型。通过使用马尔可夫链蒙特卡洛(MCMC)方法估计模型的参数。还进行了体外竞争实验。这些实验提供了比体内实验更加可控的实验条件。然后,我们提出了一种基于代理的计算机模型,该模型能够模拟无细胞和与细胞相关的病毒传播,从而对来自体外竞争测定的数据进行建模。为了估计基于代理的模型的参数,使用了替代高斯过程模型。最后,我们建议对高斯过程模型进行扩展,以解决随机计算机模型中存在的其他方差。

著录项

  • 作者

    Blythe, Derek;

  • 作者单位
  • 年度 2014
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号