首页> 外文OA文献 >Variable stepsize variable order multistep methods for stiff ordinary differential equations
【2h】

Variable stepsize variable order multistep methods for stiff ordinary differential equations

机译:刚性常微分方程的变步长变阶多步方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Backward differentiation methods are used extensively for integration of stiff systems of ordinary differential equations. During the integration, the steplength and order are controlled so that the estimated local error is less than some user prescribed tolerance. There are two techniques commonly used to implement variable stepsize multistep methods. One technique is based on fixed coefficient formulas and the other is based on variable coefficient formulas. The latter does not require past values to be equally spaced and the coefficients are computed during the integration;In this thesis, a class of multistep formulas which includes the backward differentiation formulas as a subclass is considered. These formulas have two first derivative terms compared to one first derivative term in backward differentiation formulas. For these methods, the variable coefficient implementation is used. When the stepsize is fixed, these formulas are stable up to order seven while the backward differentiation formulas are stable up to order six. Some bounds of the stepsize ratios are obtained for the stability of the order two and three methods when the stepsize is allowed to change during the integration. Some numerical bounds of the stepsize ratios for order four and five cases are also given. Selection of the formulas in the above class is done and comparisons are made with the variable coefficient backward differentiation formulas. A computer code which uses the above type formulas of orders one through five is given. Numerical testing and comparison with two other computer codes are made on a set of test problems.
机译:向后微分法被广泛用于对常微分方程的刚性系统进行积分。在积分期间,控制步长和顺序,以使估计的局部误差小于某些用户指定的公差。通常有两种技术可用于实现可变步长多步方法。一种技术基于固定系数公式,另一种技术基于可变系数公式。后者不需要将过去的值等距分布,并且在积分时可以计算系数。在本文中,考虑了一类多步公式,其中包括后向微分公式作为子类。与后向微分公式中的一个一阶导数项相比,这些公式具有两个一阶导数项。对于这些方法,使用可变系数实现。当步长固定时,这些公式稳定到7阶,而向后微分公式稳定到6阶。当在积分过程中允许改变阶跃大小时,为了获得二阶和三阶方法的稳定性,可以获取阶跃比率的一些边界。还给出了四阶和五阶情况下步长比的一些数值范围。完成了上一类公式的选择,并与变系数后向差分公式进行了比较。给出了使用上述第一至第五阶类型公式的计算机代码。针对一组测试问题进行了数字测试,并与其他两个计算机代码进行了比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号