首页> 外文OA文献 >Noise-tolerant inverse analysis models for nondestructive evaluation of transportation infrastructure systems using neural networks
【2h】

Noise-tolerant inverse analysis models for nondestructive evaluation of transportation infrastructure systems using neural networks

机译:基于神经网络的交通基础设施系统无损评估的耐噪声逆分析模型

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The need to rapidly and cost-effectively evaluate the present condition of pavement infrastructure is a critical issue concerning the deterioration of ageing transportation infrastructure all around the world. Nondestructive testing (NDT) and evaluation methods are well-suited for characterising materials and determining structural integrity of pavement systems. The falling weight deflectometer (FWD) is a NDT equipment used to assess the structural condition of highway and airfield pavement systems and to determine the moduli of pavement layers. This involves static or dynamic inverse analysis (referred to as backcalculation) of FWD deflection profiles in the pavement surface under a simulated truck load. The main objective of this study was to employ biologically inspired computational systems to develop robust pavement layer moduli backcalculation algorithms that can tolerate noise or inaccuracies in the FWD deflection data collected in the field. Artificial neural systems, also known as artificial neural networks (ANNs), are valuable computational intelligence tools that are increasingly being used to solve resource-intensive complex engineering problems. Unlike the linear elastic layered theory commonly used in pavement layer backcalculation, non-linear unbound aggregate base and subgrade soil response models were used in an axisymmetric finite element structural analysis programme to generate synthetic database for training and testing the ANN models. In order to develop more robust networks that can tolerate the noisy or inaccurate pavement deflection patterns in the NDT data, several network architectures were trained with varying levels of noise in them. The trained ANN models were capable of rapidly predicting the pavement layer moduli and critical pavement responses (tensile strains at the bottom of the asphalt concrete layer, compressive strains on top of the subgrade layer and the deviator stresses on top of the subgrade layer), and also pavement surface deflections with very low average errors comparable with those obtained directly from the finite element analyses.
机译:快速和经济有效地评估路面基础设施的现状的需求是与全世界老化的运输基础设施的恶化有关的关键问题。无损检测(NDT)和评估方法非常适合表征材料并确定路面系统的结构完整性。落锤挠度计(FWD)是一种无损检测设备,用于评估高速公路和飞机场路面系统的结构状况并确定路面层的模量。这涉及在模拟卡车载荷下对人行道表面FWD挠度轮廓的静态或动态逆分析(称为反算)。这项研究的主要目的是利用受生物学启发的计​​算系统来开发鲁棒的路面层模量反算算法,该算法可以容忍现场收集的FWD偏转数据中的噪声或不精确性。人工神经系统,也称为人工神经网络(ANN),是有价值的计算智能工具,越来越多地用于解决资源密集型复杂工程问题。与通常在路面层反算中使用的线性弹性分层理论不同,在轴对称有限元结构分析程序中使用非线性未绑定骨料基础和路基土壤响应模型来生成用于训练和测试ANN模型的综合数据库。为了开发更强大的网络,可以承受NDT数据中的嘈杂或不正确的路面偏转模式,对几种网络架构进行了训练,使它们中的噪声水平有所不同。经过训练的ANN模型能够快速预测路面层的模量和临界路面响应(沥青混凝土层底部的拉伸应变,路基层顶部的压缩应变以及路基层顶部的偏应力),以及与平均直接从有限元分析获得的路面平均挠度相当低的路面挠度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号