首页> 外文OA文献 >Putting aquifers into atmospheric simulation models: an example from the Mill Creek Watershed, northeastern Kansas
【2h】

Putting aquifers into atmospheric simulation models: an example from the Mill Creek Watershed, northeastern Kansas

机译:将含水层应用于大气模拟模型:堪萨斯州东北部Mill Creek流域的一个例子

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Aquifer–atmosphere interactions can be important in regions where the water table is shallow (\u3c2 m). A shallow water table provides moisture for the soil and vegetation and thus acts as a source term for evapotranspiration to the atmosphere. A coupled aquifer–land surface–atmosphere model has been developed to study aquifer–atmosphere interactions in watersheds, on decadal timescales. A single column vertically discretized atmospheric model is linked to a distributed soil-vegetation–aquifer model. This physically based model was able to reproduce monthly and yearly trends in precipitation, stream discharge, and evapotranspiration, for a catchment in northeastern Kansas. However, the calculated soil moisture tended to drop to levels lower than were observed in drier years. The evapotranspiration varies spatially and seasonally and was highest in cells situated in topographic depressions where the water table is in the root zone. Annually, simulation results indicate that from 5–20% of groundwater supported evapotranspiration is drawn from the aquifer. The groundwater supported fraction of evapotranspiration is higher in drier years, when evapotranspiration exceeds precipitation. A long-term (40 year) simulation of extended drought conditions indicated that water table position is a function of groundwater hydrodynamics and cannot be predicted solely on the basis of topography. The response time of the aquifer to drought conditions was on the order of 200 years indicating that feedbacks between these two water reservoirs act on disparate time scales. With recent advances in the computational power of massively parallel supercomputers, it may soon become possible to incorporate physically based representations of aquifer hydrodynamics into general circulation models (GCM) land surface parameterization schemes.
机译:在地下水位较浅(\ u3c2 m)的地区,含水层与大气的相互作用可能很重要。浅层的地下水位为土壤和植被提供了水分,因此成为蒸发蒸腾到大气的源泉。已经开发了一个耦合的含水层-地表-大气模型,以年代际尺度研究流域中的含水层-大气相互作用。单列垂直离散大气模型与分布式土壤-植被-含水层模型关联。这种基于物理的模型能够再现堪萨斯州东北部一个集水区的降水,溪流排放和蒸散量的月度和年度趋势。但是,计算得出的土壤湿度往往会下降到比干旱年份更低的水平。蒸散量在空间和季节上变化,并且在地下水位位于根区的地形凹陷处的单元中最高。每年的模拟结果表明,从含水层抽出的地下水中,有5-20%的蒸发蒸腾量来自地下水。当蒸散量超过降水量时,在较干燥的年份中,地下水支持的蒸散量较高。长期(40年)的干旱长期模拟表明,地下水位是地下水动力的函数,不能仅根据地形来预测。含水层对干旱条件的响应时间约为200年,表明这两个水库之间的反馈作用在不同的时间尺度上。随着大规模并行超级计算机的计算能力的最新发展,可能很快将基于物理的含水层流体动力学表示法纳入一般环流模型(GCM)地表参数化方案中。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号