首页> 外文OA文献 >L'isotope cosmogénique Cl-36 dans les minéraux riches en Ca et en K : développements analytiques, calibrations des taux de production et inter-calibration avec le He-3 et le Ne-21
【2h】

L'isotope cosmogénique Cl-36 dans les minéraux riches en Ca et en K : développements analytiques, calibrations des taux de production et inter-calibration avec le He-3 et le Ne-21

机译:富含Ca和K的矿物中的宇宙成因同位素Cl-36:分析发展,生产率的校准以及与He-3和Ne-21的相互校准

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Published cosmogenic 36Cl SLHL production rates from Ca and K spallation differ by almost 50% (Gosse and Phillips, 2001). The main difficulty in calibrating 36Cl production rates is to constrain the relative contribution of the various production pathways, which depend on the chemical composition of the rock, particularly on the Cl content. Whole rock 36Cl exposure ages were compared with 36Cl exposure ages evaluated in Ca-rich plagioclases in the same independently dated 10 ± 3 ka lava sample taken from Mt. Etna (Sicily, 38° N). Sequential dissolution experiments showed that high Cl concentrations in plagioclase grains could be significantly reduced after 16% dissolution yielding 36Cl exposure ages in agreement with the independent age. Stepwise dissolution of whole rock grains, on the other hand, is not as effective in reducing high Cl concentrations as it is for the plagioclase. 330 ppm Cl still remains after 85% dissolution. The 36Cl exposure ages are systematically about 30% higher than the ages calculated from the plagioclase. We could exclude contamination by atmospheric or magmatic 36Cl as an explanation for this overestimate. High Cl contents in the calibration samples used for several previous production rate studies are most probably the reason for overestimated spallation production rates from Ca and K. This is due to a poorly constrained nature of 36Cl production from low-energy neutrons. We used separated minerals, very low in Cl, to calibrate the production rates from Ca and K. 36Cl was measured in Ca-plagioclases collected from 4 lava flows at Mt. Etna (38° N, Italy, altitudes between 500 and 2000 m), and in K-feldspars from one flow at Payun Matru volcano (36° S, Argentina, altitudes 2300 and 2500 m). The flows were independently dated between 0.4 and 32 ka. Scaling factors were calculated using five different published scaling models resulting in five calibration data sets. Using a Bayesian statistical model allowed including the major inherent uncertainties. The inferred SLHL spallation production rates from Ca and K are 42.2 ± 4.8 atoms 36Cl (g Ca)-1 a-1 and 124.9 ± 8.1 atoms 36Cl (g K)-1 a-1 scaled with Stone (2000). Using the other scaling methods results in very similar values. These results are in agreement with previous production rate estimations both for Ca and K calibrated with low Cl samples. Moreover, although the exposure durations of our samples are very different and the altitude range is large, the ages recalculated with our production rates are mostly in agreement, within uncertainties, with the independent ages no matter which scaling method is used. However, scaling factors derived from the various scaling methods differ significantly. Cosmic ray flux is sensitive to elevation and its energy spectrum increases considerably with increasing altitude and latitude. To evaluate whether various TCN production rates change differently with altitude and latitude and if nuclide-specific or even target-element-specific scaling factors are required, cosmogenic 36Cl, 3He and 21Ne concentration were determined in pyroxenes over an altitude transect between 1000 and 4300 m at Kilimanjaro volcano (3° S). No altitude-dependency of the nuclide ratios could be observed, suggesting that no nuclide-specific scaling factors be needed for the studied nuclides.
机译:从Ca和K剥落中公布的宇宙成因36Cl SLHL生产率几乎相差50%(Gosse和Phillips,2001年)。校准36Cl生产率的主要困难是限制各种生产途径的相对贡献,这取决于岩石的化学成分,尤其是Cl含量。在相同的独立日期为10±3 ka的Mt熔岩样品中,将整个岩石的36Cl暴露年龄与在富含Ca的斜长石中评估的36Cl暴露年龄进行了比较。埃特纳火山(西西里岛,北纬38度)。连续的溶出度实验表明,在16%溶出度后,斜长石晶粒中的高Cl浓度可以显着降低,产生36Cl的暴露年龄与独立年龄相符。另一方面,整个岩石颗粒的逐步溶解在降低高Cl浓度方面不如斜长石有效。在85%溶解后仍残留330 ppm的Cl。系统暴露于36Cl的年龄比根据斜长石计算的年龄高出约30%。我们可以排除大气或岩浆36Cl的污染作为对此高估的解释。用于先前几次生产率研究的校准样品中的高Cl含量很可能是高估了Ca和K散裂率的原因。这是由于低能中子产生的36Cl的性质受限制。我们使用了Cl含量极低的分离矿物来校准Ca和K的生产率。在从Mt的4个熔岩流收集的Ca斜长石中测量了36Cl。埃特纳火山(北纬38度,意大利,海拔500至2000 m),以及Payun Matru火山(南纬36度,阿根廷,海拔2300至2500 m)的一次流动形成的钾长石。流量独立地定为0.4到32 ka。使用五个不同的已发布缩放模型计算缩放因子,从而得到五个校准数据集。使用贝叶斯统计模型可以包括主要的固有不确定性。由Ca和K推断出的SLHL散裂率是用Stone(2000)缩放的42.2±4.8原子36Cl(g Ca)-1 a-1和124.9±8.1原子36Cl(g K)-1 a-1。使用其他缩放方法可得出非常相似的值。这些结果与以前用低Cl样品校准的Ca和K的生产率估算值一致。此外,尽管我们样本的暴露时间截然不同并且海拔范围很大,但无论采用哪种标定方法,在不确定性范围内,与我们的生产率重新计算的年龄在大多数情况下都是一致的,并且不确定。但是,从各种缩放方法得出的缩放因子明显不同。宇宙射线通量对海拔高度敏感,并且其能谱随高度和纬度的增加而显着增加。为了评估各种TCN生产率是否随海拔和纬度的变化而变化,以及是否需要特定于核素或什至特定于目标元素的比例因子,在1000至4300 m的高空横断面上测定了辉石中的宇宙成因36Cl,3He和21Ne浓度。在乞力马扎罗火山(3°S)。没有观察到核素比率的高度相关性,这表明所研究的核素不需要特定于核素的比例因子。

著录项

  • 作者

    Schimmelpfennig Irene;

  • 作者单位
  • 年度 2009
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号