首页> 外文OA文献 >Application of LASSO to the Eigenvector Selection Problem in Eigenvector-based Spatial Filtering
【2h】

Application of LASSO to the Eigenvector Selection Problem in Eigenvector-based Spatial Filtering

机译:LASSO在基于特征向量的空间滤波中特征向量选择问题中的应用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Eigenvector based spatial filtering is one of the well-used approaches to model spatial autocorrelation among the observations or errors in a regression model. In this approach, subset of eigenvectors extracted from a modified spatial weight matrix is added to the model as explanatory variables. The subset is typically specified via the forward stepwise model selection procedure, but it is disappointingly slow when the number of observations n takes a large number. Hence as a complement or alternative, the present paper proposes the use of the least absolute shrinkage and selection operator (LASSO) to select the eigenvectors. The LASSO model selection procedure is applied to the well-known Boston housing dataset and simulation dataset, and its performance is compared with the stepwise procedure. The obtained results suggest that the LASSO procedure is fairly fast compared to the stepwise procedure, and can select eigenvectors effectively even if dataset is relatively large (n = 104), to which the forward stepwise procedure is not easy to apply.
机译:基于特征向量的空间滤波是在回归模型中对观测值或误差之间的空间自相关建模的一种常用方法。在这种方法中,将从修正的空间权重矩阵中提取的特征向量子集添加到模型中作为解释变量。通常通过正向逐步模型选择过程指定子集,但是当观察数n取大量时,它会令人失望地缓慢。因此,作为补充或替代,本文提出使用最小绝对收缩和选择算子(LASSO)来选择特征向量。将LASSO模型选择过程应用于著名的波士顿住房数据集和模拟数据集,并将其性能与逐步过程进行比较。获得的结果表明,与逐步过程相比,LASSO过程相当快,即使数据集相对较大(n = 104),正向逐步过程也不容易应用,它仍可以有效地选择特征向量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号