首页> 外文OA文献 >Pattern recognition and machine learning for magnetic resonance images with kernel methods
【2h】

Pattern recognition and machine learning for magnetic resonance images with kernel methods

机译:利用核方法的磁共振图像模式识别和机器学习

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The aim of this thesis is to apply a particular category of machine learning andudpattern recognition algorithms, namely the kernel methods, to both functional andudanatomical magnetic resonance images (MRI). This work specifically focused onudsupervised learning methods. Both methodological and practical aspects are describedudin this thesis.udKernel methods have the computational advantage for high dimensional data,udtherefore they are idea for imaging data. The procedures can be broadly divided intoudtwo components: the construction of the kernels and the actual kernel algorithmsudthemselves. Pre-processed functional or anatomical images can be computed into audlinear kernel or a non-linear kernel. We introduce both kernel regression and kerneludclassification algorithms in two main categories: probabilistic methods andudnon-probabilistic methods. For practical applications, kernel classification methodsudwere applied to decode the cognitive or sensory states of the subject from the fMRIudsignal and were also applied to discriminate patients with neurological diseases fromudnormal people using anatomical MRI. Kernel regression methods were used to predictudthe regressors in the design of fMRI experiments, and clinical ratings from theudanatomical scans.
机译:本文的目的是将一类特定的机器学习和,,,,,,,,,这项工作专门针对监督学习方法。本文对方法论和实践方面都进行了描述。 uder核方法对于高维数据具有计算优势,因此对于成像数据很有用。该过程大致可分为两个部分:内核的构造和实际的内核算法本身。可以将预处理的功能或解剖图像计算为超线性核或非线性核。我们在两个主要类别中介绍了核回归和核 udclassification算法:概率方法和 udnon概率方法。对于实际应用,核分类方法用于从fMRI udsignal解码对象的认知或感觉状态,并且还用于通过解剖MRI来区分神经病患者与正常人。在功能磁共振成像实验的设计中,使用核回归方法来预测 udes回归,并从 udanatomical扫描得出临床评分。

著录项

  • 作者

    Chu C.-Y.C.;

  • 作者单位
  • 年度 2009
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号