首页> 外文OA文献 >Addressing the cold start problem in tag-based recommender systems
【2h】

Addressing the cold start problem in tag-based recommender systems

机译:解决基于标签的推荐系统中的冷启动问题

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Folksonomies have become a powerful tool to describe, discover, search, and navigateudonline resources (e.g., pictures, videos, blogs) on the Social Web. Unlike taxonomies andudontologies, which impose a hierarchical categorisation on content, folksonomies directlyudallow end users to freely create and choose the categories (in this case, tags) that bestuddescribe a piece of information. However, the freedom aafforded to users comes at a cost:udas tags are defined informally, the retrieval of information becomes more challenging.udDifferent solutions have been proposed to help users discover content in this highly dynamicudsetting. However, they have proved to be effective only for users who have already heavilyudused the system (active users) and who are interested in popular items (i.e., items taggedudby many other users).udIn this thesis we explore principles to help both active users and more importantly new orudinactive users (cold starters) to find content they are interested in even when this contentudfalls into the long tail of medium-to-low popularity items (cold start items). We investigateudthe tagging behaviour of users on content and show how the similarities between users andudtags can be used to produce better recommendations. We then analyse how users createudnew content on social tagging websites and show how preferences of only a small portionudof active users (leaders), responsible for the vast majority of the tagged content, can beudused to improve the recommender system's scalability. We also investigate the growth ofudthe number of users, items and tags in the system over time. We then show how thisudinformation can be used to decide whether the benefits of an update of the data structuresudmodelling the system outweigh the corresponding cost.udIn this work we formalize the ideas introduced above and we describe their implementation.udTo demonstrate the improvements of our proposal in recommendation efficacy andudefficiency, we report the results of an extensive evaluation conducted on three differentudsocial tagging websites: CiteULike, Bibsonomy and MovieLens. Our results demonstrateudthat our approach achieves higher accuracy than state-of-the-art systems for cold startudusers and for users searching for cold start items. Moreover, while accuracy of our techniqueudis comparable to other techniques for active users, the computational cost that itudrequires is much smaller. In other words our approach is more scalable and thus moreudsuitable for large and quickly growing settings.
机译:民俗分类已成为描述,发现,搜索和导航 udonline在线社交资源(例如图片,视频,博客)的强大工具。与分类法和语义学对内容进行分级分类不同,民间分类法直接允许最终用户自由地创建和选择最能描述信息的类别(在这种情况下为标签)。然而,给用户带来的自由是有代价的: udas标签是非正式定义的,信息的检索变得更具挑战性。 ud已经提出了不同的解决方案来帮助用户在这种高度动态的 udting中发现内容。但是,事实证明,它们仅对已经严重使用系统的用户(活动用户)有效,并且对流行项目(即,被许多其他用户标记的项目)感兴趣的用户才有效。 ud在本文中,我们探索了以下原理:帮助活跃用户以及更重要的是新用户或非活跃用户(冷启动者)找到他们感兴趣的内容,即使该内容落入中低受欢迎程度项(冷启动项)的尾巴。我们调查了用户对内容的标记行为,并说明了如何使用用户和udtags之间的相似性来产生更好的建议。然后,我们分析用户如何在社交标签网站上创建 udnew内容,并展示如何 udud小部分活跃用户(领导者)的偏好(负责绝大多数被标记的内容),以改善推荐系统的可扩展性。我们还将调查系统中用户,项目和标签的数量随时间的增长。然后,我们说明如何使用此 udinformation来决定更新数据结构/对系统进行udmodel的好处是否超过了相应的成本。 ud在这项工作中,我们将上面介绍的思想形式化,并描述了它们的实现。由于我们的建议在推荐效果和效率方面的改进,我们报告了在三个不同的 uduscial标签网站(CiteULike,Bibsonomy和MovieLens)上进行的广泛评估的结果。我们的结果表明, udd与最先进的系统相比,对于冷启动 uduser和搜索冷启动项的用户,我们的方法具有更高的准确性。此外,尽管我们的技术的准确性可以与活跃用户的其他技术相提并论,但所需的计算成本却要小得多。换句话说,我们的方法更具可扩展性,因此更适合/用于大型且快速增长的环境。

著录项

  • 作者

    Zanardi V.;

  • 作者单位
  • 年度 2011
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号