首页> 外文OA文献 >Rethinking the nature of mental disorder: a latent structure approach to data from three national psychiatric morbidity surveys
【2h】

Rethinking the nature of mental disorder: a latent structure approach to data from three national psychiatric morbidity surveys

机译:重新思考精神障碍的性质:一种潜在的结构方法,用于来自三个国家精神病学发病率调查的数据

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

High levels of comorbidity between the anxiety and depressive disorders have raised questions about whether the diagnostic boundaries between these disorders need to be redrawn, or even whether both should be considered as different facets of a single disease process. Accordingly, latent class analysis has been used in several attempts to find data-driven groupings of individuals based on the symptoms of anxiety and depression. However, the assumption of conditional independence in this approach risks the extraction of spurious ‘severity classes’, making findings difficult to interpret. Factor mixture analysis relaxes that assumption by incorporating a common factor within each class, thereby overcoming the problem. This project investigated whether factor mixture analysis can suggest a data-driven classification of individuals based on the symptoms of common mental disorders. The analysis was based on pooled symptom-level data from three national psychiatric morbidity surveys of adults living in Great Britain carried out in 1993, 2000 and 2007. A comparison of the fit from the various latent variable models indicated that factor mixture models provided the best fit to the data, both in terms of model parsimony and goodness-of-fit. However, subsequent investigations suggested that the classes did not represent true groups in the population, but were rather accommodating violations of key assumptions in the standard factor model. Therefore, the results provide little guidance for revising the psychiatric classification. This is the first study to carry out an in-depth investigation into the interpretation of the extracted classes after applying factor mixture models to investigate the latent structure of mental disorders; its findings highlight the difficulties of interpreting the results of these models. Consequently, the thesis questions whether factor mixture models are actually useful for exploring the true nature of psychiatric disorders, and whether the present heavy use of such models is justified. An investigation of previously published examples suggests that their results may be prone to misinterpretation. The thesis concludes with a set of recommendations for the reporting of these models that may help to minimise the risks of such misinterpretation.
机译:焦虑症和抑郁症之间的高合并症引起了人们对以下问题的疑问:这些疾病之间的诊断界限是否需要重画,或者甚至应将两者都视为单一疾病过程的不同方面。因此,潜在类别分析已用于基于焦虑和抑郁症状寻找数据驱动的个体分组的多种尝试中。但是,采用这种方法的条件独立性假设冒着提取虚假“严重度等级”的风险,使发现难以解释。因子混合分析通过在每个类别中合并一个公共因子来放宽该假设,从而克服了这个问题。该项目研究了因素混合分析是否可以根据常见精神障碍的症状建议对数据进行分类。该分析基于1993年,2000年和2007年对三名居住在英国的成年人进行的全国性全国精神病学发病率调查的综合症状水平数据。对各种潜在变量模型的拟合度比较表明,因素混合模型提供了最好的在模型简约性和拟合优度方面都适合数据。但是,随后的调查表明,这些类别并不代表人口中的真实群体,而是容纳了标准因子模型中违反关键假设的情况。因此,研究结果对修订精神科分类没有指导意义。这是首次应用因子混合模型研究精神障碍的潜在结构后,对提取的类别的解释进行深入研究的研究;其发现凸显了解释这些模型结果的困难。因此,论文质疑因素混合模型对于探索精神疾病的真实性质是否真的有用,以及目前大量使用这种模型是否合理。对以前发布的示例进行的调查表明,它们的结果可能易于产生误解。本文最后针对这些模型的报告提出了一系列建议,这些建议可能有助于最大程度地减少这种误解的风险。

著录项

  • 作者

    McCrea RL;

  • 作者单位
  • 年度 2013
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号