首页> 外文OA文献 >Patch-based models for visual object classes
【2h】

Patch-based models for visual object classes

机译:基于补丁的可视对象类模型

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This thesis concerns models for visual object classes that exhibit a reasonable amount of regularity,udsuch as faces, pedestrians, cells and human brains. Such models are useful for makingud“within-object” inferences such as determining their individual characteristics and establishingudtheir identity. For example, the model could be used to predict the identity of a face, the poseudof a pedestrian or the phenotype of a cell and segment parts of a human brain.udExisting object modelling techniques have several limitations. First, most current methodsudhave targeted the above tasks individually using object specific representations; therefore, theyudcannot be applied to other problems without major alterations. Second, most methods have beenuddesigned to work with small databases which do not contain the variations in pose, illumination,udocclusion and background clutter seen in ‘real world’ images. Consequently, many existingudalgorithms fail when tested on unconstrained databases. Finally, the complexity of the trainingudprocedure in these methods makes it impractical to use large datasets.udIn this thesis, we investigate patch-based models for object classes. Our models are capableudof exploiting very large databases of objects captured in uncontrolled environments. Weudrepresent the test image with a regular grid of patches from a library of images of the sameudobject. All the domain specific information is held in this library: we use one set of images ofudthe object to help draw inferences about others. In each experimental chapter we investigateuda different within-object inference task. In particular we develop models for classification, regression,udsemantic segmentation and identity recognition. In each task, we achieve results thatudare comparable to or better than the state of the art. We conclude that patch-based representationudcan be successfully used for the above tasks and shows promise for other applications suchudas generation and localization.
机译:本文涉及具有合理规律性的视觉对象类模型,例如面部,行人,细胞和人脑。这样的模型可用于进行“对象内”推断,例如确定其个体特征并建立其身份。例如,该模型可用于预测面部,行人的姿势 udud或细胞表型以及人脑的部分区域的身份。 ud现有的对象建模技术具有一些局限性。首先,大多数当前方法已使用对象特定的表示分别针对上述任务;因此,如果没有重大改动,它们将无法应用于其他问题。其次,大多数方法已设计为与小型数据库配合使用,这些小型数据库不包含在“真实世界”图像中看到的姿势,照明,伪影和背景杂乱的变化。因此,在不受约束的数据库上进行测试时,许多现有 udal算法都将失败。最后,这些方法的训练过程的复杂性使得使用大型数据集变得不切实际。 ud在本文中,我们研究了基于补丁的对象类模型。我们的模型能够 udof利用在不受控制的环境中捕获的大型对象数据库。我们使用来自相同 udobject图像库的规则网格补丁来表示测试图像。所有特定于域的信息都保存在该库中:我们使用对象的一组图像来帮助推断其他对象。在每个实验章节中,我们研究 uda不同的对象内推理任务。特别是,我们开发了用于分类,回归,语义分割和身份识别的模型。在每项任务中,我们所取得的结果都可以媲美或优于现有技术。我们得出结论,基于补丁的表示形式 ud可以成功地用于上述任务,并显示出对 udas生成和本地化等其他应用程序的希望。

著录项

  • 作者

    Aghajanian J.;

  • 作者单位
  • 年度 2011
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号