首页> 外文OA文献 >Sparse EEG Source Localization Using Bernoulli Laplacian Priors
【2h】

Sparse EEG Source Localization Using Bernoulli Laplacian Priors

机译:使用伯努利拉普拉斯先验的稀疏脑电图源定位

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Source localization in electroencephalography has received an increasing amount of interest in the last decade. Solving the underlying ill-posed inverse problem usually requires choosing an appropriate regularization. The usual l2 norm has been considered and provides solutions with low computational complexity. However, in several situations, realistic brain activity is believed to be focused in a few focal areas. In these cases, the l2 norm is known to overestimate the activated spatial areas. One solution to this problem is to promote sparse solutions for instance based on the l1 norm that are easy to handle with optimization techniques. In this paper, we consider the use of an l0 + l1 norm to enforce sparse source activity (by ensuring the solution has few nonzero elements) while regularizing the nonzero amplitudes of the solution. More precisely, the l0 pseudonorm handles the position of the non zero elements while the l1 norm constrains the values of their amplitudes. We use a Bernoulli–Laplace prior to introduce this combined l0 + l1 norm in a Bayesian framework. The proposed Bayesian model is shown to favor sparsity while jointly estimating the model hyperparameters using a Markov chain Monte Carlo sampling technique. We apply the model to both simulated and real EEG data, showing that the proposed method provides better results than the l2 and l1 norms regularizations in the presence of pointwise sources. A comparison with a recent method based on multiple sparse priors is also conducted.
机译:在过去的十年中,脑电图中的源定位受到越来越多的关注。解决潜在的不适定逆问题通常需要选择适当的正则化。已经考虑了通常的l2范数,并提供了低计算复杂度的解决方案。但是,在某些情况下,现实的大脑活动被认为集中在几个重点领域。在这些情况下,已知l2范数会高估激活的空间区域。解决此问题的一种方法是例如基于l1范数推广稀疏解决方案,这些解决方案易于使用优化技术处理。在本文中,我们考虑使用l0 + l1范数来强制稀疏源活动(通过确保解决方案具有少量非零元素),同时规范化解决方案的非零幅度。更准确地说,l0伪范数处理非零元素的位置,而l1范数约束其幅值。在贝叶斯框架中引入此合并的l0 + l1范数之前,我们使用Bernoulli-Laplace。在使用马尔可夫链蒙特卡洛采样技术联合估计模型超参数的同时,提出的贝叶斯模型显示出了稀疏性。我们将模型应用于模拟和实际的EEG数据,表明在存在逐点源的情况下,所提出的方法比l2和l1规范正则化提供了更好的结果。还进行了与基于多个稀疏先验的最新方法的比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号