首页> 外文OA文献 >Inverse problems in medical ultrasound images - applications to image deconvolution, segmentation and super-resolution
【2h】

Inverse problems in medical ultrasound images - applications to image deconvolution, segmentation and super-resolution

机译:医学超声图像中的反问题-在图像反卷积,分割和超分辨率中的应用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In the field of medical image analysis, ultrasound is a core imaging modality employed due to its real time and easy-to-use nature, its non-ionizing and low cost characteristics. Ultrasound imaging is used in numerous clinical applications, such as fetus monitoring, diagnosis of cardiac diseases, flow estimation, etc. Classical applications in ultrasound imaging involve tissue characterization, tissue motion estimation or image quality enhancement (contrast, resolution, signal to noise ratio). However, one of the major problems with ultrasound images, is the presence of noise, having the form of a granular pattern, called speckle. The speckle noise in ultrasound images leads to the relative poor image qualities compared with other medical image modalities, which limits the applications of medical ultrasound imaging. In order to better understand and analyze ultrasound images, several device-based techniques have been developed during last 20 years. The object of this PhD thesis is to propose new image processing methods allowing us to improve ultrasound image quality using postprocessing techniques. First, we propose a Bayesian method for joint deconvolution and segmentation of ultrasound images based on their tight relationship. The problem is formulated as an inverse problem that is solved within a Bayesian framework. Due to the intractability of the posterior distribution associated with the proposed Bayesian model, we investigate a Markov chain Monte Carlo (MCMC) technique which generates samples distributed according to the posterior and use these samples to build estimators of the ultrasound image. In a second step, we propose a fast single image super-resolution framework using a new analytical solution to the l2-l2 problems (i.e., $ell_2$-norm regularized quadratic problems), which is applicable for both medical ultrasound images and piecewise/ natural images. In a third step, blind deconvolution of ultrasound images is studied by considering the following two strategies: i) A Gaussian prior for the PSF is proposed in a Bayesian framework. ii) An alternating optimization method is explored for blind deconvolution of ultrasound.
机译:在医学图像分析领域,由于其实时性和易用性,非电离性和低成本特性,超声已成为一种核心成像方式。超声成像可用于许多临床应用,例如胎儿监护,心脏病诊断,血流估计等。超声成像的经典应用包括组织表征,组织运动估计或图像质量增强(对比度,分辨率,信噪比) 。然而,超声图像的主要问题之一是噪声的存在,其具有称为斑点的颗粒状形式。与其他医学图像模态相比,超声图像中的斑点噪声导致相对较差的图像质量,这限制了医学超声成像的应用。为了更好地理解和分析超声图像,在过去的20年中开发了几种基于设备的技术。本博士学位论文的目的是提出一种新的图像处理方法,使我们能够使用后处理技术来改善超声图像的质量。首先,我们提出了一种基于紧密关系的超声图像联合反卷积和分割的贝叶斯方法。该问题被表述为在贝叶斯框架内解决的反问题。由于与提议的贝叶斯模型相关的后验分布的难处理性,我们研究了马尔可夫链蒙特卡罗(MCMC)技术,该技术可生成根据后验分布的样本,并使用这些样本来构建超声图像的估计量。第二步,我们提出一个快速的单图像超分辨率框架,该框架使用针对l2-l2问题(即$ ell_2 $-范数正规化二次问题)的新解析解决方案,该方法适用于医学超声图像和分段图像/自然图像。第三步,通过考虑以下两种策略研究超声图像的盲去卷积:i)在贝叶斯框架中提出了PSF的高斯先验。 ii)探索了一种用于超声的盲去卷积的交替优化方法。

著录项

  • 作者

    Zhao Ningning;

  • 作者单位
  • 年度 2016
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号