首页> 外文OA文献 >Memory and performance issues in parallel multifrontal factorizations and triangular solutions with sparse right-hand sides
【2h】

Memory and performance issues in parallel multifrontal factorizations and triangular solutions with sparse right-hand sides

机译:并行多边分解和具有稀疏右手边的三角解中的内存和性能问题

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We consider the solution of very large sparse systems of linear equations on parallel architectures. In this context, memory is often a bottleneck that prevents or limits the use of direct solvers, especially those based on the multifrontal method. This work focuses on memory and performance issues of the two memory and computationally intensive phases of direct methods, that is, the numerical factorization and the solution phase. In the first part we consider the solution phase with sparse right-hand sides, and in the second part we consider the memory scalability of the multifrontal factorization. In the first part, we focus on the triangular solution phase with multiple sparse right-hand sides, that appear in numerous applications. We especially emphasize the computation of entries of the inverse, where both the right-hand sides and the solution are sparse. We first present several storage schemes that enable a significant compression of the solution space, both in a sequential and a parallel context. We then show that the way the right-hand sides are partitioned into blocks strongly influences the performance and we consider two different settings: the out-of-core case, where the aim is to reduce the number of accesses to the factors, that are stored on disk, and the in-core case, where the aim is to reduce the computational cost. Finally, we show how to enhance the parallel efficiency. In the second part, we consider the parallel multifrontal factorization. We show that controlling the active memory specific to the multifrontal method is critical, and that commonly used mapping techniques usually fail to do so: they cannot achieve a high memory scalability, i.e. they dramatically increase the amount of memory needed by the factorization when the number of processors increases. We propose a class of "memory-aware" mapping and scheduling algorithms that aim at maximizing performance while enforcing a user-given memory constraint and provide robust memory estimates before the factorization. These techniques have raised performance issues in the parallel dense kernels used at each step of the factorization, and we have proposed some algorithmic improvements. The ideas presented throughout this study have been implemented within the MUMPS (MUltifrontal Massively Parallel Solver) solver and experimented on large matrices (up to a few tens of millions unknowns) and massively parallel architectures (up to a few thousand cores). They have demonstrated to improve the performance and the robustness of the code, and will be available in a future release. Some of the ideas presented in the first part have also been implemented within the PDSLin (Parallel Domain decomposition Schur complement based Linear solver) solver.
机译:我们考虑并行体系结构上非常大的稀疏线性方程组的解。在这种情况下,内存通常是阻止或限制使用直接求解器(尤其是基于多面方法的求解器)的瓶颈。这项工作着重于直接方法的两个内存阶段和计算密集型阶段的内存和性能问题,即数值分解和求解阶段。在第一部分中,我们考虑了右侧稀疏的解决方案阶段,在第二部分中,我们考虑了多前沿分解的内存可伸缩性。在第一部分中,我们着重于三角形解决方案阶段,该阶段具有多个稀疏的右侧,出现在众多应用中。我们特别强调逆项的计算,在逆项中,右侧和解都是稀疏的。我们首先介绍几种存储方案,它们可以在顺序和并行上下文中显着压缩解决方案空间。然后,我们证明了将右侧划分为多个块的方式对性能有很大影响,并且我们考虑了两种不同的设置:核心外情况,其目的是减少对因素的访问次数,即存储在磁盘上以及核心情况下,目的是降低计算成本。最后,我们展示了如何提高并行效率。在第二部分中,我们考虑并行多边分解。我们表明,控制特定于多边界方法的活动内存至关重要,并且常用的映射技术通常无法做到这一点:它们无法实现高内存可伸缩性,即当数量增加时,因分解而需要的内存数量将大大增加。的处理器数量增加。我们提出了一类“内存感知”映射和调度算法,旨在最大化性能,同时强制执行用户提供的内存约束,并在分解之前提供可靠的内存估计。这些技术在分解的每个步骤中使用的并行密集型内核中引起了性能问题,并且我们提出了一些算法上的改进。贯穿本研究提出的想法已在MUMPS(多面大规模并行求解器)求解器中实现,并在大型矩阵(多达数千万个未知数)和大规模并行架构(多达数千个核)上进行了实验。它们已经证明可以提高代码的性能和健壮性,并将在将来的版本中提供。第一部分介绍的一些思想也已在PDSLin(基于并行域分解基于Schur补码的线性求解器)求解器中实现。

著录项

  • 作者

    Rouet François-Henry;

  • 作者单位
  • 年度 2012
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号