首页> 外文OA文献 >Numerical modeling of the dissolution of karstic cavities
【2h】

Numerical modeling of the dissolution of karstic cavities

机译:岩溶腔溶蚀的数值模拟

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The karstic cavity dissolution problems are often studied from a hierarchical point of view. Based on a discussion of the frequently adopted assumptions, a pore-scale model is first developed for a simple geochemistry scheme. The impact of implementing reactive or thermodynamic equilibrium boundary condition at the dissolving surface is discussed. Such a pore-scale model is subsequently used as a basis for developing models at higher scale levels. The first problem deals with transport from a heterogeneous and rough surface characterized by a mixed boundary condition. The resulting macro-scale model takes the form of an effective surface theory. In the homogenized model developed with the effective surface concept (denote ESCM), the original rough surface is replaced locally by a homogeneous and smooth surface, where effective boundary conditions are prescribed. To develop the concept of effective surface, a multi-domain decomposition approach is applied. In this framework the velocity, pressure and concentration are estimated at the micro-scale with an asymptotic expansion of deviation terms with respect to macro-scale velocity and concentration fields. Closure problems for the deviations are obtained and used to define the effective surface position and the corresponding boundary conditions. The evolution of some effective properties and the impact of surface geometry and some dimensionless numbers are investigated. A comparison between the numerical results obtained with this effective model and those from direct numerical simulations with the original rough surface shows good agreements. In the case corresponding to mass transport in porous media, upscaling is carried out with the method of volume averaging to develop a macro-scale porous medium model (denote PMM), starting from a pore-scale transport problem involving thermodynamic equilibrium or nonlinear reactive boundary conditions. A general expression to describe the macro-scale mass transport is obtained involving several effective parameters which are given by specific closure problems. The impact on the effective parameters of the fluid properties, in terms of pore-scale Péclet number (Pe), and the process chemical properties, in terms of pore-scale Damköhler number (Da) and reaction order (n), is studied for periodic stratified, 2D and 3D unit cells. An example of the application of the macro-scale model is presented with the emphasis on the potential impact of additional, non-traditional effective parameters appearing in the theoretical development on the improvement of the accuracy of the macro-scale model. The above developed PMM is also used as a Diffuse Interface Model (DIM) to describe the evolution of a gypsum cavity formation induced by dissolution. The method is based upon the assumption of a pseudo-component dissolving with a thermodynamic equilibrium boundary condition. A methodology is proposed in order to choose suitable parameters for the DIM model and hence predict the correct dissolution fluxes and surface recession velocity. Additional simulations are performed to check which type of momentum balance equation should be used. Calculations with a variable density and Boussinesq approximation were also performed to evaluate the potential for natural convection. The results showed that the impact of density driven flows were negligible in the cases under investigation. The potential of the methodology is illustrated on two large-scale configurations: one corresponding to a gypsum lens contained within a porous rock layer and the other to an isolated pillar in a flooded gypsum quarry. Geomechanical consequences of the dissolution in terms of mechanical stability is evaluated with the help of a simplified geomechanical model. A final case is also studied in which gypsum is replaced by salt to show the applicability of the proposed methodology to a rapidly dissolving material
机译:通常从分层的角度研究岩溶腔溶蚀问题。在对经常采用的假设进行讨论的基础上,首先为简单的地球化学方案开发了孔隙尺度模型。讨论了在溶解表面实施反应性或热力学平衡边界条件的影响。这种孔隙尺度模型随后被用作在更高尺度水平上开发模型的基础。第一个问题涉及从以混合边界条件为特征的非均质粗糙表面传输。最终的宏观模型采用有效表面理论的形式。在使用有效表面概念开发的均质模型(表示ESCM)中,原始粗糙表面被均质且光滑的表面局部替换,其中规定了有效边界条件。为了发展有效表面的概念,应用了多域分解方法。在这个框架中,速度,压力和浓度是在微观尺度上估计的,相对于宏观尺度速度和浓度场,偏差项的渐近展开。获得偏差的闭合问题,并将其用于定义有效表面位置和相应的边界条件。研究了一些有效特性的演变以及表面几何形状和一些无量纲数的影响。使用此有效模型获得的数值结果与使用原始粗糙表面进行直接数值模拟得到的数值结果之间的比较显示出良好的一致性。在与多孔介质中的质量传输相对应的情况下,采用体积平均的方法进行放大,以开发宏观尺度的多孔介质模型(表示PMM),从涉及热力学平衡或非线性反应边界的孔隙尺度传输问题开始条件。获得了描述宏观质量传输的通用表达式,其中涉及由特定封闭问题给出的几个有效参数。研究了对流体性质的有效参数的影响,以孔尺度佩克利数(Pe)和过程化学性质的影响,以孔尺度Damköhler数(Da)和反应阶数(n)为依据。周期性分层的2D和3D晶胞。给出了宏观模型应用的一个例子,重点是在理论发展中出现的其他非传统有效参数对改善宏观模型准确性的潜在影响。上述开发的PMM还可用作扩散界面模型(DIM),以描述由溶解引起的石膏腔形成的演变。该方法基于具有热力学平衡边界条件的拟组分溶解的假设。提出了一种方法,以便为DIM模型选择合适的参数,从而预测正确的溶解通量和表面凹陷速度。执行其他模拟以检查应使用哪种类型的动量平衡方程。还使用可变密度和Boussinesq近似进行计算,以评估自然对流的可能性。结果表明,在所调查的案例中,密度驱动流量的影响可以忽略不计。该方法的潜力在两个大型配置中得到了说明:一种对应于多孔岩层中包含的石膏透镜,另一种对应于淹没石膏采石场中的孤立柱子。在简化的地质力学模型的帮助下,评估了溶解在机械稳定性方面的地质力学后果。还研究了一种最终情况,其中用盐代替石膏以显示所提出的方法对快速溶解材料的适用性

著录项

  • 作者

    Guo Jianwei;

  • 作者单位
  • 年度 2015
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号