The modelization of bending plates with through-the-thickness cracks is investigated. We consider the Kirchhoff–Love plate model, which is valid for very thin plates. Reduced Hsieh–Clough–Tocher triangles and reduced Fraejis de Veubeke–Sanders quadrilaterals are used for the numerical discretization. We apply the eXtended Finite Element Method strategy: enrichment of the finite element space with the asymptotic bending singularities and with the discontinuity across the crack. The main point, addressed in this paper, is the numerical computation of stress intensity factors. For this, two strategies, direct estimate and J-integral, are described and tested. Some practical rules, dealing with the choice of some numerical parameters, are underlined. ud
展开▼
机译:研究了具有全厚度裂纹的弯曲板的建模。我们考虑Kirchhoff-Love平板模型,该模型适用于非常薄的平板。简化的Hsieh-Clough-Tocher三角形和简化的Fraejis de Veubeke-Sanders四边形用于数值离散。我们应用扩展的有限元方法策略:利用渐近弯曲奇异性和整个裂纹的不连续性来丰富有限元空间。本文要解决的重点是应力强度因子的数值计算。为此,描述和测试了两种策略,直接估计和J积分。强调一些处理某些数值参数选择的实用规则。 ud
展开▼