首页> 外文OA文献 >Machine Learning and Mass Estimation Methods for Ground-Based Aircraft Climb Prediction
【2h】

Machine Learning and Mass Estimation Methods for Ground-Based Aircraft Climb Prediction

机译:地基飞机爬升预测的机器学习和质量估计方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this paper, we apply Machine Learning methods to improve the aircraft climb prediction in the context of ground-based applications. Mass is a key parameter for climb prediction. As it is considered a competitive parameter by many airlines, it is currently not available to ground-based trajectory predictors. Consequently, most predictors today use a reference mass that may be different from the actual aircraft mass. In previous papers, we have introduced a least square method to estimate the mass from past trajectory points, using the physical model of the aircraft. Another mass estimation method, based on an adaptive mechanism, has also been proposed by Schultz et. al. We now introduce a new approach, where the mass is considered as the response variable of a prediction model that is learned from a set of example trajectories. This Machine Learning approach is compared with the results obtained when using the BADA (Base of Aircraft Data) reference mass or the two state-of-the-art mass estimation methods. In these experiments, 9 different aircraft types are considered. When compared with the baseline method (resp. the mass estimation methods), the Machine Learning approach reduces the RMSE (Root Mean Square Error) on the predicted altitude by at least 58 % (resp. 27 %) when assuming the speed profile to be known, and by at least 29 % (resp. 17 %) when using the BADA speed profile except for the aircraft types E145 and F100. For these types, the observed speed profile is far from the BADA speed profile.
机译:在本文中,我们应用机器学习方法来改进基于地面应用的飞机的爬升预测。质量是爬升预测的关键参数。由于许多航空公司都将其视为竞争性参数,因此目前基于地面的轨迹预测器无法使用。因此,当今大多数预测器使用的参考质量可能与实际飞机质量不同。在先前的论文中,我们已经使用飞机的物理模型引入了最小二乘方法来根据过去的轨迹点估算质量。 Schultz等人也提出了另一种基于自适应机制的质量估计方法。等现在,我们引入一种新方法,其中将质量视为从一组示例轨迹中获悉的预测模型的响应变量。将这种机器学习方法与使用BADA(飞机数据基础)参考质量或两种最新质量估算方法时获得的结果进行比较。在这些实验中,考虑了9种不同的飞机类型。与基线方法(分别为质量估计方法)相比,机器学习方法在假定速度曲线为时将预测高度上的RMSE(均方根误差)降低了至少58%(分别为27%)。已知,使用BADA速度曲线时至少要降低29%(分别为17%),但E145和F100型飞机除外。对于这些类型,观察到的速度曲线与BADA速度曲线相距甚远。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号