首页> 外文OA文献 >Biomimetic apatite-based composite materials obtained by spark plasma sintering (SPS): physicochemical and mechanical characterizations
【2h】

Biomimetic apatite-based composite materials obtained by spark plasma sintering (SPS): physicochemical and mechanical characterizations

机译:通过火花等离子体烧结(SPS)获得的仿生磷灰石基复合材料:物理化学和机械特性

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Nanocrystalline calcium phosphate apatites are biomimetic compounds analogous to bone mineral and are at the origin of the bioactivity of most biomaterials used as bone substitutes. Their unique surface reactivity originatesudfrom the presence of a hydrated layer containing labile ionsud(mostly divalent ones). So the setup of 3D biocompatibleudapatite-based bioceramics exhibiting a high reactivityudrequests the development of «low» temperature consolidationudprocesses such as spark plasma sintering (SPS), in order to preserve the characteristics of the hydrated nanocrystals. However, mechanical performances may still need to be improved for such nanocrystalline apatite bioceramics,udespecially in view of load-bearing applications. The reinforcement by association with biopolymers representsudan appealing approach, while preserving the advantageousudbiological properties of biomimetic apatites. Herein, we report the preparation of composites based on biomimetic apatite associated with various quantities of microcrystalline cellulose (MCC, 1–20 wt%), a naturaludfibrous polymer. The SPS-consolidated composites wereudanalyzed from both physicochemical (X-ray diffraction,Fourier transform infrared, solid state NMR) andudmechanical (Brazilian test) viewpoints. The preservation ofudthe physicochemical characteristics of apatite and celluloseudin the final material was observed. Mechanical propertiesudof the composite materials were found to be directly relatedudto the polymer/apatite ratios and a maximum crushingudstrength was reached for 10 wt% of MCC.
机译:纳米晶磷酸钙磷灰石是类似于骨矿物质的仿生化合物,并且是大多数用作骨替代物的生物材料的生物活性的起源。它们独特的表面反应性始于 ud包含不稳定离子的水合层的存在 ud(大多数为二价离子)。因此,具有高反应性的3D生物相容性基于磷灰石的生物陶瓷的设置要求开发“低温”固结 ud工艺(例如火花等离子体烧结(SPS)),以保留水合纳米晶体的特性。然而,对于这种纳米晶态磷灰石生物陶瓷,仍可能需要改善机械性能,特别是鉴于承重应用。通过与生物聚合物结合的增强代表了 udan吸引人的方法,同时保留了仿生磷灰石的有利生物学特性。在这里,我们报道了基于仿生磷灰石的复合材料的制备,该仿生磷灰石与各种数量的天然/超纤维聚合物微晶纤维素(MCC,1–20 wt%)相关。从物理化学(X射线衍射,傅立叶变换红外,固态NMR)和物理力学(巴西测试)的角度对SPS固结的复合材料进行了分析。观察到最终材料中磷灰石和纤维素的理化特性得以保留。发现复合材料的机械性能与聚合物/磷灰石的比例直接相关,并且对于10wt%的MCC,达到最大的压碎/强度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号