首页> 外文OA文献 >High-resolution Hyperspectral Image Fusion Based on Spectral Unmixing
【2h】

High-resolution Hyperspectral Image Fusion Based on Spectral Unmixing

机译:基于谱分解的高分辨率高光谱图像融合

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This paper presents a high-resolution hyperspectral image fusion algorithm based on spectral unmixing. The widely used linear observation model (with additive Gaussian noise) is combined with the linear spectral mixture model to form the data terms. The non-negativity and sum-to-one constraints, resulting from the intrinsic physical properties of the abundances (i.e., fractions of the materials contained in each pixel), are introduced to regularize the ill-posed image fusion problem. The joint fusion and unmixing problem is formulated as the minimization of a cost function with respect to the mixing matrix (which contains the spectral signatures of the pure material, referred to as endmembers), and the abundance maps, with non-negativity and sum-to-one constraints. This optimization problem is attacked with an alternating optimization strategy. The two resulting sub-problems are convex and are solved efficiently using the alternating direction method of multipliers. Simulation results, including comparisons with the state-of-the-art, document the effectiveness and competitiveness of the proposed unmixing based fusion algorithm.
机译:本文提出了一种基于光谱分解的高分辨率高光谱图像融合算法。广泛使用的线性观测模型(具有加性高斯噪声)与线性光谱混合模型相结合以形成数据项。由丰度的固有物理特性(即,每个像素中包含的材料的分数)引起的非负性和合一约束被引入以规整不适定的图像融合问题。联合融合和解混问题被表述为相对于混合矩阵(包含纯物质的光谱特征,称为末端成员)和丰度图(具有非负性和和)的成本函数的最小化。一对一的约束。该优化问题受到交替优化策略的攻击。产生的两个子问题是凸的,可以使用乘数的交替方向方法有效地求解。仿真结果(包括与最新技术的比较)证明了所提出的基于混合的融合算法的有效性和竞争力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号