首页> 外文OA文献 >A Comparison of Two Methods for Stochastic Fault Detection : the Parity Space Approach and Principal Component Analysis
【2h】

A Comparison of Two Methods for Stochastic Fault Detection : the Parity Space Approach and Principal Component Analysis

机译:两种随机故障检测方法的比较:奇偶空间法和主成分分析法。

摘要

This paper compares two methods for fault detection and isolation in a stochastic setting. We assume additive faults on input and output signals, and stochastic unmeasurable disturbances. The first method is the parity space approach, analyzed in a stochastic setting. The stochastic parity space approach is similar to a Kalman filter, but uses an FIR fiter, while the Kalman filter is IIR. This enables faster response to changes. The second method is to use PCA, principal component analysis. In this case no model is needed, but fault isolation will be more difficult. The methods are illustrated on a simulation model of an F-16 aircraft. The fault detection probabilities can be calculated explicitly for the parity space approach, and are verified by simulations. The simulations of the PCA method suggest that the residuals have similar fault detection and isolation capabilities as for the stochastic parity space approach.
机译:本文比较了两种随机设置的故障检测和隔离方法。我们假设输入和输出信号存在附加故障,并且随机出现无法测量的干扰。第一种方法是在随机环境下分析的奇偶空间方法。随机奇偶空间方法类似于卡尔曼滤波器,但使用FIR拟合器,而卡尔曼滤波器为IIR。这样可以更快地响应更改。第二种方法是使用PCA,即主成分分析。在这种情况下,不需要模型,但是故障隔离将更加困难。在F-16飞机的仿真模型上说明了这些方法。可以为奇偶空间方法显式计算故障检测概率,并通过仿真进行验证。 PCA方法的仿真表明,残差具有与随机奇偶空间方法相似的故障检测和隔离功能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号