首页> 外文OA文献 >Topological derivative for the inverse scattering of elastic waves
【2h】

Topological derivative for the inverse scattering of elastic waves

机译:弹性波逆散射的拓扑导数

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

To establish an alternative analytical framework for the elastic-wave imaging of underground cavities, the focus of this study is an extension of the concept of topological derivative, rooted in elastostatics and shape optimization, to three-dimensional elastodynamics involving semi-infinite and infinite solids. The main result of the proposed boundary integral approach is a formula for topological derivative, explicit in terms of the elastodynamic fundamental solution, obtained by an asymptotic expansion of the misfit-type cost functional with respect to the creation of an infinitesimal hole in an otherwise intact (semi-infinite or infinite) elastic medium. Valid for an arbitrary shape of the infinitesimal cavity, the formula involves the solution of six canonical exterior elastostatic problems, and becomes fully explicit when the vanishing cavity is spherical. A set of numerical results is included to illustrate the potential of topological derivative as a computationally efficient tool for exposing an approximate cavity topology, location, and shape via a grid-type exploration of the host solid. For a comprehensive solution to three-dimensional inverse scattering problems involving elastic waves, the proposed approach can be used most effectively as a pre-conditioning tool for more refined, albeit computationally intensive minimization-based imaging algorithms. To the authors' knowledge, an application of topological derivative to inverse scattering problems has not been attempted before; the methodology proposed in this paper could also be extended to acoustic problems.
机译:为建立地下腔体弹性波成像的替代分析框架,本研究的重点是将源自弹性静力学和形状优化的拓扑导数概念扩展到涉及半无限和无限固体的三维弹性动力学。提出的边界积分法的主要结果是一个拓扑导数的公式,用弹性动力学基本解来表示,该公式通过错配类型成本函数的渐进展开而相对于在其他情况下完整的无穷小孔的产生而获得(半无限或无限)弹性介质。该公式对于无限小腔的任意形状均有效,该公式涉及六个规范的外部弹性静力学问题的解决方案,当消失的腔为球形时,该公式变得完全明确。包括一组数值结果,以说明拓扑导数作为一种潜在的计算有效工具,可通过对主体进行网格化探索来揭示近似的腔体拓扑,位置和形状。对于涉及弹性波的三维逆散射问题的综合解决方案,该建议方法可以最有效地用作更精细的预处理工具,尽管这种计算基于最小化的计算密集型算法。据作者所知,以前从未尝试将拓扑导数应用于反散射问题。本文提出的方法也可以扩展到声学问题。

著录项

  • 作者

    Guzina B. B.; Bonnet Marc;

  • 作者单位
  • 年度 2004
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号