首页> 外文OA文献 >Model Structure Selection and Training Algorithms for a HMM Gesture Recognition System
【2h】

Model Structure Selection and Training Algorithms for a HMM Gesture Recognition System

机译:HMM手势识别系统的模型结构选择与训练算法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Hidden Markov models using the Fully-Connected, Left-Right and Left-Right Banded model structures are applied to the problem of alphabetical letter gesture recognition. We examine the effect of training techniques, in particular the Baum-Welch and Viterbi Path Counting techniques, on each of the model structures. We show that recognition rates improve when moving from a Fully-Connected model to a Left-Right model and a Left-Right banded u27staircaseu27 model with peak recognition rates of 84.8%, 92.31% and 97.31% respectively. The Left-Right Banded model in conjunction with the Viterbi Path Counting present the best performance. Direct calculation of model parameters from analysis of the physical system was also tested, yielding a peak recognition rate of 92%, but the simplicity and efficiency of this approach is of interest.
机译:使用全连接,左右和左右带状模型结构的隐马尔可夫模型被应用于字母字母手势识别问题。我们研究了每种模型结构上的训练技术,特别是Baum-Welch和Viterbi路径计数技术的效果。我们显示,当从完全连接模型转移到左-右模型和左-右带状 u27staircase u27模型时,识别率提高,峰值识别率分别为84.8%,92.31%和97.31%。左右带状模型与维特比路径计数一起提供了最佳性能。还测试了通过对物理系统的分析直接计算模型参数的结果,得出的峰值识别率为92%,但是这种方法的简单性和效率令人关注。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号