首页> 外文OA文献 >Constrained monotone EM algorithms for finite mixture of multivariate Gaussians
【2h】

Constrained monotone EM algorithms for finite mixture of multivariate Gaussians

机译:多元高斯有限混合的约束单调EM算法

摘要

The likelihood function for normal multivariate mixtures may present both local spurious maxima and also singularities and the latter may cause the failure of the optimization algorithms. Theoretical results assure that imposing some constraints on the eigenvalues of the covariance matrices of the multivariate normal components leads to a constrained parameter space with no singularities and at least a smaller number of local maxima of the likelihood function. Conditions assuring that an EM algorithmudimplementing such constraints maintains the monotonicity property of the usual EM algorithm are provided. Different approaches are presented and their performances are evaluated and compared using numerical experiments.
机译:正常多元混合的似然函数可能会同时出现局部虚假最大值和奇异点,而后者可能会导致优化算法失败。理论结果确保对多元正态分量的协方差矩阵的特征值施加一些约束会导致约束空间不具有奇异性,并且至少具有较小的似然函数局部极大值。提供了确保EM算法消除这种约束保持了常规EM算法的单调性的条件。提出了不同的方法,并使用数值实验对它们的性能进行了评估和比较。

著录项

  • 作者

    Ingrassia S; Rocci R;

  • 作者单位
  • 年度 2007
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号