首页> 外文OA文献 >A Global Quantum duality Principle for Subgroups and Homogeneous Spaces
【2h】

A Global Quantum duality Principle for Subgroups and Homogeneous Spaces

机译:子群和齐次空间的全局量子对偶原理

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

For a complex or real algebraic group G, with g := Lie(G), quantizations of global type are suitable Hopf algebras F_q[G] or U_q(g) over C[q,q^{−1}]. Any such quantization yields a structure ofudPoisson group on G, and one of Lie bialgebra on g: correspondingly, one has dual Poisson groups G^∗ and a dual Lie bialgebra g^∗. In this context, we introduce suitable notions of quantum subgroup and, correspondingly, of quantum homogeneous space, in three versions: weak, proper and strict (also called flat in the literature). The lastudtwo notions only apply to those subgroups which are coisotropic, andudthose homogeneous spaces which are Poisson quotients; the first one instead has no restrictions whatsoever.udThe global quantum duality principle (GQDP), as developed in [F. Gavarini, The global quantum duality principle, Journ. fur die Reine Angew. Math. 612 (2007), 17–33.], associates with any global quantization of G, or of g, a global quantization of g^∗, or of G^∗. In this paper we present a similar GQDP for quantum subgroups or quantumudhomogeneous spaces. Roughly speaking, this associates with every quantum subgroup, resp. quantum homogeneous space, of G, a quantum homogeneous space, resp. a quantum subgroup, of G^∗. The construction is tailored after four parallel paths — according to theuddifferent ways one has to algebraically describe a subgroup or a homogeneousudspace — and is “functorial”, in a natural sense.ud Remarkably enough, the output of the constructions are always quantizationsudof proper type. More precisely, the output is related to the input as follows: the former is the coisotropic dual of the coisotropic interior of the latter — a fact that extends the occurrence of Poisson duality in the original GQDP for quantum groups. Finally, when the input is a strict quantization then the output is strict as well — so the special role of strict quantizations is respected.ud We end the paper with some explicit examples of application of our recipes.
机译:对于具有g:= Lie(G)的复数或实数代数G,全局类型的量化适用于C [q,q ^ {-1}]上的Hopf代数F_q [G]或U_q(g)。任何这样的量化都会在G上生成 udPoisson基团,在g上生成一个Lie双代数结构:相应地,一个结构具有对偶Poisson群G ^ *和对偶Lie双代数g ^ *。在这种情况下,我们引入了三种形式的量子子群以及相应的量子同质空间的适当概念:弱,适当和严格(在文献中也称为平面)。最后的 udtwo概念仅适用于那些各向同性的子组,以及的泊松商均质空间。 ud如[F. Gavarini,全球量子对偶原理,Journ。雷因·安格(Rine Angew)。数学。 612(2007),17–33。],与G或g的任何全局量化,g ^ *或G ^ *的全局量化相关联。在本文中,我们为量子子群或量子不均匀空间提供了类似的GQDP。粗略地说,这与每个量子子组有关。 G的量子同质空间,分别是。 G ^ ∗的一个量子子群。结构是根据四个平行路径量身定制的,这是根据,--,--,-的---的。总是量化 udof适当的类型。更准确地说,输出与输入的相关性如下:前者是后者的各向同性内部的同向对偶-这一事实扩展了量子组中原始GQDP中泊松对偶性的出现。最后,当输入是严格的量化时,输出也同样是严格的-因此,严格量化的特殊作用得到了尊重。 ud我们在本文的结尾给出了一些明确的配方示例。

著录项

  • 作者

    Ciccoli N; Gavarini F;

  • 作者单位
  • 年度 2014
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号