首页> 外文OA文献 >Pricing Basket of Credit Default Swaps and Collateralised Debt Obligation by Lévy Linearly Correlated, Stochastically Correlated, and Randomly Loaded Factor Copula Models and Evaluated by the Fast and Very Fast Fourier Transform
【2h】

Pricing Basket of Credit Default Swaps and Collateralised Debt Obligation by Lévy Linearly Correlated, Stochastically Correlated, and Randomly Loaded Factor Copula Models and Evaluated by the Fast and Very Fast Fourier Transform

机译:信用违约掉期和抵押债务义务的定价篮子,采用Lévy线性相关,随机相关和随机加载的系数Copula模型,并通过快速和非常快速的Fourier变换进行评估

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In the last decade, a considerable growth has been added to the volume of the credit riskudderivatives market. This growth has been followed by the current financial marketudturbulence. These two periods have outlined how significant and important are theudcredit derivatives market and its products. Modelling-wise, this growth has parallelisedudby more complicated and assembled credit derivatives products such as mth to defaultudCredit Default Swaps (CDS), m out of n (CDS) and collateralised debt obligationud(CDO).udIn this thesis, the Lévy process has been proposed to generalise and overcome the CreditudRisk derivatives standard pricing model's limitations, i.e. Gaussian Factor CopulaudModel. One of the most important drawbacks is that it has a lack of tail dependence or,udin other words, it needs more skewed correlation. However, by the Lévy Factor CopulaudModel, the microscopic approach of exploring this factor copula models has beenuddeveloped and standardised to incorporate an endless number of distribution alternativesudthose admits the Lévy process. Since the Lévy process could include a variety ofudprocesses structural assumptions from pure jumps to continuous stochastic, then thoseuddistributions who admit this process could represent asymmetry and fat tails as theyudcould characterise symmetry and normal tails. As a consequence they could captureudboth high and low events¿ probabilities.udSubsequently, other techniques those could enhance the skewness of its correlation andudbe incorporated within the Lévy Factor Copula Model has been proposed, i.e. theud'Stochastic Correlated Lévy Factor Copula Model' and 'Lévy Random Factor LoadingudCopula Model'. Then the Lévy process has been applied through a number of proposedudPricing Basket CDS&CDO by Lévy Factor Copula and its skewed versions and evaluated by V-FFT limiting and mixture cases of the Lévy Skew Alpha-Stable distribution and GeneralizedudHyperbolic distribution.udNumerically, the characteristic functions of the mth to default CDS's and udud(n/m) th touddefault CDS's number of defaults, the CDO's cumulative loss, and loss given defaultudare evaluated by semi-explicit techniques, i.e. via the DFT's Fast form (FFT) and theudproposed Very Fast form (VFFT). This technique through its fast and very fast formsudreduce the computational complexity from O(N2) to, respectively, O(N log2 N ) andud O(N ).
机译:在过去的十年中,信用风险衍生产品市场的规模已大大增加。这种增长之后是当前的金融市场动荡。这两个时期概述了信用衍生品市场及其产品的重要性。从模型的角度来看,这种增长已将 ud与更复杂和组合的信用衍生产品并行化,例如,第m至违约 ud信用违约掉期(CDS),n中的m(CDS)和抵押债务义务 ud(CDO)。论文提出了Lévy过程来推广和克服Credit udRisk衍生产品标准定价模型的局限性,即高斯因子Copula udModel。最重要的缺点之一是它缺乏尾部依赖性,换句话说,它需要更偏斜的相关性。但是,通过Lévy因子Copula udModel,探索了该因子copula模型的微观方法,并对其进行了标准化,以纳入无数的分布替代方案。由于Lévy过程可以包括从纯跳跃到连续随机的多种 udprocess过程结构假设,因此那些承认该过程的 uddistributions可以代表不对称和肥尾,因为它们可以表征对称和正态尾。因此,它们可以捕获高概率事件和低概率事件。 ud随后,提出了其他一些可以增强其相关偏度的技术,并建议将其合并到LévyFactor Copula模型中,即, ud'Stochastic CorrelatedLévy因子Copula模型”和“Lévy随机因子加载 udCopula模型”。然后,通过由LévyFactor Copula提出的一些 ud定价篮CDS&CDO及其偏斜版本,应用了Lévy过程,并通过VéFFT极限和Lévy偏斜Alpha稳定分布和广义 ud双曲线分布的混合情况进行了评估。 ,第m个默认CDS的特征函数和 ud ud(n / m)第 uddefault个CDS的默认数量,CDO的累积损失和给定默认损失的特征函数通过半显式技术(即通过DFT的快速格式(FFT)和建议的超快速格式(VFFT)。该技术通过其快速和非常快的形式将计算复杂度从O(N2)降低到O(N log2 N)和ud O(N)。

著录项

  • 作者

    Fadel Sayed Mohammed;

  • 作者单位
  • 年度 2010
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号