首页> 外文OA文献 >A modified sparse distributed memory model for extracting clean patterns from noisy inputs
【2h】

A modified sparse distributed memory model for extracting clean patterns from noisy inputs

机译:改进的稀疏分布式内存模型,用于从噪声输入中提取干净的模式

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Abstract—The Sparse Distributed Memory (SDM) proposed by Kanerva provides a simple model for human long-term memory, with a strong underlying mathematical theory. However, there are problematic features in the original SDM model that affect its efficiency and performance in real world applications and for hardware implementation. In this paper, we propose modifications to the SDM model that improve its efficiency and performance in pattern recall. First, the address matrix is built using training samples rather than random binary sequences. This improves the recall performance significantly. Second, the content matrix is modified using a simple tri-state logic rule. This reduces the storage requirements of the SDM and simplifies the implementation logic, making it suitable for hardware implementation. The modified model has been tested using pattern recall experiments. It is found that the modified model can recall clean patterns very well from noisy inputs.
机译:摘要— Kanerva提出的稀疏分布式内存(SDM)为人类长期记忆提供了一个简单的模型,并具有强大的基础数学理论。但是,原始SDM模型中存在一些有问题的功能,这些功能会影响其在现实应用程序和硬件实现中的效率和性能。在本文中,我们提出了对SDM模型的修改,以提高其在模式调用方面的效率和性能。首先,使用训练样本而不是随机二进制序列来构建地址矩阵。这样可以显着提高召回性能。其次,使用简单的三态逻辑规则修改内容矩阵。这减少了SDM的存储要求,并简化了实现逻辑,使其适合于硬件实现。修改后的模型已使用模式调用实验进行了测试。发现修改后的模型可以很好地从嘈杂的输入中调用干净的模式。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号