首页> 外文OA文献 >HMM-based activity recognition with a ceiling RGB-D camera
【2h】

HMM-based activity recognition with a ceiling RGB-D camera

机译:带有天花板RGB-D摄像机的基于HMM的活动识别

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Automated recognition of Activities of Daily Living allows to identify possible health problems and apply corrective strategies in Ambient Assisted Living (AAL). Activities of Daily Living analysis can provide very useful information for elder care and long-term care services. This paper presents an automated RGB-D video analysis system that recognises human ADLs activities, related to classical daily actions. The main goal is to predict the probability of an analysed subject action. Thus, the abnormal behaviour can be detected. The activity detection and recognition is performed using an affordable RGB-D camera. Human activities, despite their unstructured nature, tend to have a natural hierarchical structure; for instance, generally making a coffee involves a three-step process of turning on the coffee machine, putting sugar in cup and opening the fridge for milk. Action sequence recognition is then handled using a discriminative Hidden Markov Model (HMM). RADiaL, a dataset with RGB-D images and 3D position of each person for training as well as evaluating the HMM, has been built and made publicly available.
机译:对日常生活活动的自动识别可以识别可能的健康问题,并在环境辅助生活(AAL)中应用纠正策略。日常生活分析活动可以为老年人护理和长期护理服务提供非常有用的信息。本文介绍了一种自动RGB-D视频分析系统,该系统可以识别与经典日常活动相关的人类ADL活动。主要目标是预测被分析主体行为的可能性。因此,可以检测到异常行为。使用负担得起的RGB-D摄像机执行活动检测和识别。人类活动尽管具有非结构化的性质,但往往具有自然的等级结构。例如,制作咖啡通常包括以下三个步骤:打开咖啡机,将糖放入杯中并打开冰箱中的牛奶。然后,使用区分性隐马尔可夫模型(HMM)处理动作序列识别。 RADiaL是一个具有RGB-D图像和每个人的3D位置的数据集,用于训练和评估HMM,并已公开发布。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号