首页> 外文OA文献 >Modeling direction selective visual neural network with ON and OFF pathways for extracting motion cues from cluttered background
【2h】

Modeling direction selective visual neural network with ON and OFF pathways for extracting motion cues from cluttered background

机译:使用开和关路径建模方向选择性视觉神经网络,以从混乱的背景中提取运动线索

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The nature endows animals robustvision systems for extracting and recognizing differentmotion cues, detectingpredators, chasing preys/mates in dynamic and cluttered environments. Direction selective neurons (DSNs), with preference to certain orientation visual stimulus, have been found in both vertebrates and invertebrates for decades. In thispaper, with respectto recent biological research progress in motion-detecting circuitry, we propose a novel way to model DSNs for recognizing movements on four cardinal directions. It is based on an architecture of ON and OFF visual pathways underlies a theory of splitting motion signals into parallel channels, encoding brightness increments and decrements separately. To enhance the edge selectivity and speed response to moving objects, we put forth a bio-plausible spatial-temporal network structure with multiple connections of same polarity ON/OFF cells. Each pair-wised combination is filtered with dynamic delay depending on sampling distance. The proposed vision system was challenged against image streams from both synthetic and cluttered real physical scenarios. The results demonstrated three major contributions: first, the neural network fulfilled the characteristics of a postulated physiological map of conveying visual information through different neuropile layers; second, the DSNs model can extract useful directional motion cues from cluttered background robustly and timely, which hits at potential of quick implementation in visionbased micro mobile robots; moreover, it also represents better speed response compared to a state-of-the-art elementary motion detector.
机译:大自然赋予动物鲁棒的视觉系统,用于在动态和混乱的环境中提取和识别不同的运动线索,检测掠食者,追捕猎物/伴侣。数十年来,在脊椎动物和无脊椎动物中都发现了方向选择性神经元(DSNs),它优先于某些方向的视觉刺激。在本文中,关于运动检测电路中的最新生物学研究进展,我们提出了一种新颖的方法来对DSN进行建模,以识别四个基本方向上的运动。它基于ON和OFF视觉通道的体系结构,该理论是将运动信号分为并行通道,分别对亮度增量和减量进行编码的理论。为了增强边缘选择性和对移动物体的速度响应,我们提出了一种具有生物合理性的时空网络结构,该结构具有多个连接相同极性的ON / OFF单元。每个成对组合都会根据采样距离以动态延迟进行过滤。拟议的视觉系统面临来自合成和混乱真实物理场景的图像流的挑战。结果表明了三个主要贡献:首先,神经网络实现了通过不同神经桩层传递视觉信息的假定生理图的特征。其次,DSNs模型可以从杂乱的背景中可靠,及时地提取有用的定向运动线索,这为在基于视觉的微型移动机器人中实现快速实现提供了可能。此外,与最新的基本运动检测器相比,它还具有更好的速度响应。

著录项

  • 作者

    Fu Qinbing; Yue Shigang;

  • 作者单位
  • 年度 2017
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号