首页> 外文OA文献 >Fast and scalable similarity and correlation queries on time series data
【2h】

Fast and scalable similarity and correlation queries on time series data

机译:快速和可扩展的时间序列数据相似性和相关性查询

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Time series are ubiquitous in many fields ranging from financial applications such as the stock market to scientific applications and sensor data. Hence, there has been an increasing interest in time series indexing over the past years because there has been an increasing need for fast methods for analyzing and querying these datasets that are often too big for practical brute force analysis. We start with the main contributions to the field over the past decade and a half. We will then proceed by describing new solutions to correlation analysis on time series datasets using an existing index called the Compact Multi-Resolution Index (CMRI). We describe new algorithms for indexed correlation analysis using Pearson's product moment coefficient and using the multidimensional correlation coefficient and introduce a new measure called Dynamic Time Warping Correlation (DTWC) based on Dynamic Time Warping (DTW). In addition to these linear correlation algorithms, we propose an algorithm called rank order correlation on a non-linear/monotonic measure. To support these algorithms, we revised the Compact Multi-Resolution Index (CMRI) and propose a new index for time series datasets which improves over the sizes, speed and precision of CMRI. We call this index the reduced Compact Multi-Resolution Index (rCMRI). We evaluate the performance of rCMRI compared to CMRI for range queries and range query based queries.
机译:时间序列在从股票市场等金融应用到科学应用和传感器数据等许多领域无处不在。因此,由于对快速分析和查询这些数据集的快速方法的需求在过去几年中越来越引起人们的兴趣,而这些数据集对于实际的蛮力分析来说太大了。我们从过去十五年来对该领域的主要贡献开始。然后,我们将使用称为紧凑型多分辨率索引(CMRI)的现有索引,描述时间序列数据集相关分析的新解决方案。我们介绍了使用Pearson乘积矩系数和多维相关系数进行索引相关分析的新算法,并介绍了一种基于动态时间规整(DTW)的新方法,称为动态时间规整相关(DTWC)。除了这些线性相关算法外,我们还提出了一种在非线性/单调测度上称为秩相关的算法。为了支持这些算法,我们修订了紧凑型多分辨率索引(CMRI),并为时间序列数据集提出了新的索引,该索引改善了CMRI的大小,速度和精度。我们将此指数称为精简多分辨率指数(rCMRI)。对于范围查询和基于范围查询的查询,我们评估了rCMRI与CMRI相比的性能。

著录项

  • 作者

    Nguyen Philon;

  • 作者单位
  • 年度 2009
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号