首页> 外文期刊>IEEE Transactions on Knowledge and Data Engineering >Querying time series data based on similarity
【24h】

Querying time series data based on similarity

机译:根据相似度查询时间序列数据

获取原文
获取原文并翻译 | 示例

摘要

We study similarity queries for time series data where similarity is defined, in a fairly general way, in terms of a distance function and a set of affine transformations on the Fourier series representation of a sequence. We identify a safe set of transformations supporting a wide variety of comparisons and show that this set is rich enough to formulate operations such as moving average and time scaling. We also show that queries expressed using safe transformations can efficiently be computed without prior knowledge of the transformations. We present a query processing algorithm that uses the underlying multidimensional index built over the data set to efficiently answer similarity queries. Our experiments show that the performance of this algorithm is competitive to that of processing ordinary (exact match) queries using the index, and much faster than sequential scanning. We propose a generalization of this algorithm for simultaneously handling multiple transformations at a time, and give experimental results on the performance of the generalized algorithm.
机译:我们研究时间序列数据的相似性查询,其中以相当普遍的方式根据距离函数和序列的傅立叶级数表示上的一组仿射变换定义了相似性。我们确定了一组支持各种比较的安全转换,并表明该转换足够丰富,可以制定诸如移动平均和时间换算之类的操作。我们还表明,无需事先了解转换,就可以有效地计算使用安全转换表示的查询。我们提出了一种查询处理算法,该算法使用在数据集之上构建的基础多维索引来有效地回答相似性查询。我们的实验表明,该算法的性能与使用索引处理普通(完全匹配)查询的性能相比具有竞争优势,并且比顺序扫描要快得多。我们提出了该算法的一般化,一次可同时处理多个变换,并给出了关于广义算法性能的实验结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号