首页> 外文OA文献 >Development of novel satellite attitude determination and control algorithms based on telemetry data from an Earth satellite
【2h】

Development of novel satellite attitude determination and control algorithms based on telemetry data from an Earth satellite

机译:基于地球卫星遥测数据的新型卫星姿态确定和控制算法的开发

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

All spacecraft missions require accurate knowledge of attitude, which is derived from on-board sensors using attitude determination algorithms. The increasing demands for attitude accuracy, high performance and low cost spacecraft are driving designers to change from available attitude determination methods to those that are more robust and accurate. However, the cost, the processor workload and the time-constraints in spacecraft development and deployment projects curtail the opportunity for developing new on-board attitude determination methods, especially with regards to the development of more precise sensors. Therefore, it is always desired to achieve the required attitude accuracy with the existing set of on-board sensors, but using effective attitude determination methods and sensor fusion algorithms. Developing such algorithms starts on the ground and is subject to verification and tuning with real experimental data from telemetry. Moreover, the on-ground mission control center has to evaluate the attitude accuracy, calibrate sensors and performance. Motivated by these needs, the main objective of this thesis is to develop novel attitude determination algorithms combining several sensors and attitude estimation methods for Ground-Based Attitude Estimation (GBAE) with telemetry data. The GBAE formulation will be based on a guaranteed ellipsoidal state estimation for acquisition mode and a modified Kalman filter for pointing mode, to provide optimal attitude estimates of the spacecraft. The GBAE has to be evaluated both in the simulation environment and in the flight environment. In the simulation environment, the evaluation of the GBAE rests on the availability of an accurate dynamical model for the spacecraft. However, spacecraft dynamics are complex with multiple modes of operation. Moreover, the nonlinearities in the actual system make the spacecraft dynamics more complex. This motivates the use of switching between a global nonlinear controller for acquisition mode and a local linear controller for pointing mode, which can guarantee performance and is less computationally intensive for implementation in an on-board microprocessor. In this thesis, novel attitude determination and control algorithms are evaluated in the flight environment for a case study in collaboration with the Canadian Space Agency for the SCISAT-1 satellite.
机译:所有航天器飞行任务都需要精确的姿态知识,这是使用姿态确定算法从机载传感器得出的。对姿态精度,高性能和低成本航天器的需求不断增长,驱使设计人员从可用的姿态确定方法转变为更鲁棒和准确的方法。但是,航天器开发和部署项目中的成本,处理器工作量以及时间限制,限制了开发新的机载姿态确定方法的机会,尤其是在开发更精确的传感器方面。因此,始终希望通过现有的车载传感器集来达到所需的姿态精度,但要使用有效的姿态确定方法和传感器融合算法。此类算法的开发是从地面开始的,并且需要通过遥测的真实实验数据进行验证和调整。此外,地面任务控制中心还必须评估姿态精度,校准传感器和性能。基于这些需求,本论文的主要目的是开发一种新颖的姿态确定算法,该算法将几种传感器和姿态估计方法结合在一起,用于遥测数据的地面姿态估计(GBAE)。 GBAE公式将基于对获取模式的有保证的椭圆状态估计和对指向模式的改进的卡尔曼滤波器,以提供航天器的最佳姿态估计。必须在模拟环境和飞行环境中对GBAE进行评估。在模拟环境中,对GBAE的评估取决于航天器的精确动力学模型的可用性。但是,航天器动力学在多种操作模式下都很复杂。而且,实际系统中的非线性使航天器动力学更加复杂。这激发了在用于获取模式的全局非线性控制器和用于指向模式的局部线性控制器之间进行切换的动机,这可以保证性能,并且在车载微处理器中实现时计算量较小。在本文中,与加拿大航天局合作对SCISAT-1卫星进行了案例研究,评估了在飞行环境中的新型姿态确定和控制算法。

著录项

  • 作者

    Gollu Narendra;

  • 作者单位
  • 年度 2008
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号