首页> 外文OA文献 >Optimization-Based Control Methodologies withudApplications to Autonomous Vehicle
【2h】

Optimization-Based Control Methodologies withudApplications to Autonomous Vehicle

机译:ud基于优化的控制方法应用于自动驾驶汽车

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This thesis includes two main parts. In the first part, the main contribution is to develop nonsingular rigid-body attitude control laws using a convex formulation, andudimplement them in an experimental set up. The attitude recovery problem is first parameterized in terms of quaternions, and then two polynomial controllers using an SoS Lyapunov function and an SoS density function are developed. A quaternion-based polynomial controller using backstepping is also designed to make the closed-loop systemudasymptotically stable. Moreover, the proposed quaternion-based controllers are implemented in a Quanser helicopter, and compared to the polynomial controllers and a PIDudcontroller experimentally.udThe main contribution of the second part of this thesis is to analytically solve the Hamilton-Jacobi-Bellman equation for a class of third order nonlinear optimal controludproblems for which the dynamics are affine and the cost is quadratic in the input. One special advantage of this work is that the solution is directly obtained for the control input without the computation of a value function first. The value function can however also be obtained based on the control input. Furthermore, a Lyapunov function can be constructed for a subclass of optimal control problems, yielding a proof certificate for stability. Usingudthe proposed methodology, experimental results of a path following problem implemented in a Wheeled Mobile Robot (WMR) are then presented to verify the effectiveness of theudproposed methodology.
机译:本文主要包括两个部分。在第一部分中,主要贡献是使用凸公式来开发非奇异刚体姿态控制定律,并在实验装置中实现它们。首先根据四元数对姿态恢复问题进行参数化,然后开发两个使用SoS Lyapunov函数和SoS密度函数的多项式控制器。还设计了基于四元数的采用反步的多项式控制器,以使闭环系统渐近稳定。此外,本文提出的基于四元数的控制器是在Quanser直升机中实现的,并与多项式控制器和PID udcontroller进行了实验比较。 ud本论文第二部分的主要贡献是分析性地解决了Hamilton-Jacobi-Bellman方程。对于一类三阶非线性最优控制问题,对于这些问题,动力学是仿射的,而输入的代价是二次方的。这项工作的一个特殊优势是,无需先计算值函数即可直接获得控制输入的解。但是,还可以根据控制输入获得值函数。此外,可以为最优控制问题的子类构造Lyapunov函数,从而获得稳定性证明。使用提出的方法,然后提出了在轮式移动机器人(WMR)中实现的路径跟踪问题的实验结果,以验证提出的方法的有效性。

著录项

  • 作者

    Gholitabar Omrani Behnam;

  • 作者单位
  • 年度 2010
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号