首页> 外文OA文献 >A Variable Bandwidth, Power-Scalable Optical Receiver Front-End
【2h】

A Variable Bandwidth, Power-Scalable Optical Receiver Front-End

机译:可变带宽,可扩展功率的光接收器前端

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The tremendous growth in internet data traffic and computation power has increased demand for high-speed links in almost all communication systems. Normally, high-speed interconnects in a super computer are implemented using a short distance electrical medium such as a printed circuit board or coaxial cable. However, data transmission through an electrical medium suffers severe bandwidth limitation due to its distributed resistance, inductance and capacitance. To overcome this problem, several equalization techniques are adopted which can make the system more complex and power hungry. An efficient way to enhance the capacity of short-reach link is through the use of an optical channel rather than the band-limited electrical one. udThe analog front-end is the most important building block of the optical receiver as it converts the small current generated by the photodiode to a significant voltage level. In this work, we present an inductor-less, variable bandwidth, power-scalable optical receiver front-end in TSMC 65nm and 90nm CMOS with two different topologies. The front-end contains a transimpedance amplifier (TIA) and post amplifiers (PA) in 90 nm CMOS (Design 1) whereas in 65 nm CMOS (Design 2) an offset compensation block and a transconductor is incorporated to improve the robustness of the overall receiver front-end.The transimpedance amplifier in both designs is implemented with the shunt feedback topology and the post amplifiers in 90 nm and 65 nm design use the common source topology loaded with modified active inductors and the Cherry-Hooper inverter based topology, respectively. In order to make the receiver front-end power and bandwidth scalable, a current controlling PMOS array and a tuneable resistive bank is implemented in both designs. The Design 1 is able to vary the supported data rate from 1.25 Gb/s to 15 Gb/s. The gain at each data rate is ~ 84 dBΩ. The overall power dissipation varies from 0.94 mW to 7.46 mW as the data rate scales, maintaining an energy per bit lower than 800 fJ at all data rates using a 1.2 V power supply. The input referred noise density varies from 4.31 pA/√Hz to 14.27 pA/√Hz. In the Design 2, the receiver front-end can be tuned from 1.25 Gb/s to 20 Gb/s maintaining a fixed gain of ~75 dBΩ. The power dissipation in this case varies from 0.32 mW to 13.5 mW as the data rate scales up, maintaining energy per bit less than 700 fJ using a 1 V power supply. The input referred noise density varies from 8.46 pA/√Hz to 18 pA/√Hz. Simulation shows that Design 1 is not robust enough against the mismatch and global process variations whereas Design 2 is much more robust against these effects. udThis type of front-end has applications in links that vary data rate in response to system requirements. Additionally, the lowest data rate can be act as an idle mode which receives data used only to maintain transmitter and receiver synchronization.ud
机译:互联网数据流量和计算能力的飞速增长已经使几乎所有通信系统中对高速链接的需求都增加了。通常,超级计算机中的高速互连是使用短距离电介质(例如印刷电路板或同轴电缆)实现的。然而,通过电介质的数据传输由于其分布的电阻,电感和电容而遭受严重的带宽限制。为了克服这个问题,采用了几种均衡技术,这些均衡技术可使系统更加复杂且耗电。增强短距离链路容量的一种有效方法是使用光信道而不是带宽受限的电信道。模拟前端是光接收器最重要的组成部分,因为它将光电二极管产生的小电流转换为显着的电压电平。在这项工作中,我们展示了采用两种不同拓扑结构的台积电65nm和90nm CMOS的无电感器,可变带宽,可扩展功率的光接收器前端。前端在90 nm CMOS(设计1)中包含一个跨阻放大器(TIA)和后置放大器(PA),而在65 nm CMOS(设计2)中包含一个偏移补偿模块和一个跨导体,以提高整体的鲁棒性两种设计中的互阻放大器均采用并联反馈拓扑实现,而90 nm和65 nm设计中的后置放大器分别使用装有改进型有源电感器的公共源拓扑和基于Cherry-Hooper逆变器的拓扑。为了使接收机的前端功率和带宽可扩展,在两种设计中均实现了电流控制PMOS阵列和可调电阻组。设计1能够将支持的数据速率从1.25 Gb / s更改为15 Gb / s。每个数据速率下的增益约为84dBΩ。随着数据速率的扩展,总功耗在0.94 mW至7.46 mW之间变化,使用1.2 V电源时,在所有数据速率下,每比特能量保持低于800 fJ。输入参考噪声密度在4.31 pA /√Hz至14.27 pA /√Hz之间变化。在设计2中,接收器前端可以从1.25 Gb / s调谐到20 Gb / s,并保持〜75dBΩ的固定增益。随着数据速率的扩大,这种情况下的功耗在0.32 mW至13.5 mW之间变化,使用1 V电源,每位能量保持低于700 fJ。输入参考噪声密度从8.46 pA /√Hz到18 pA /√Hz不等。仿真表明,设计1不能很好地抵抗失配和全局过程变化,而设计2却可以抵抗这些影响。 ud这种类型的前端在链接中的应用程序会根据系统要求而改变数据速率。此外,最低的数据速率可以用作空闲模式,该模式接收仅用于维持发送器和接收器同步的数据。

著录项

  • 作者

    Dash Partha Protim;

  • 作者单位
  • 年度 2013
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号