首页> 外文OA文献 >High-Speed Pipeline VLSI Architectures for Discrete Wavelet Transforms
【2h】

High-Speed Pipeline VLSI Architectures for Discrete Wavelet Transforms

机译:离散小波变换的高速管线VLSI架构

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The discrete wavelet transform (DWT) has been widely used in many fields, such as image compression, speech analysis and pattern recognition, because of its capability of decomposing a signal at multiple resolution levels. Due to the intensive computations involved with this transform, the design of efficient VLSI architectures for a fast computation of the transforms have become essential, especially for real-time applications and those requiring processing of high-speed data. The objective of this thesis is to develop a scheme for the design of hardware resource-efficient high-speed pipeline architectures for the computation of the DWT. The goal of high speed is achieved by maximizing the operating frequency and minimizing the number of clock cycles required for the DWT computation with little or no overhead on the hardware resources. In this thesis, an attempt is made to reach this goal by enhancing the inter-stage and intra-stage parallelisms through a systematic exploitation of the characteristics inherent in discrete wavelet transforms.udIn order to enhance the inter-stage parallelism, a study is undertaken for determining the number of pipeline stages required for the DWT computation so as to synchronize their operations and utilize their hardware resources efficiently. This is achieved by optimally distributing the computational load associated with the various resolution levels to an optimum number of stages of the pipeline. This study has determined that employment of two pipeline stages with the first one performing the task of the first resolution level and the second one that of all the other resolution levels of the 1-D DWT computation, and employment of three pipeline stages with the first and second ones performing the tasks of the first and second resolution levels and the third one performing that of the remaining resolution levels of the 2-D DWT computation, are the optimum choices for the development of 1-D and 2-D pipeline architectures, respectively. The enhancement of the intra-stage parallelism is based on two main ideas. The first idea, which stems from the fact that in each consecutive resolution level the input data are decimated by a factor of two along each dimension, is to decompose the filtering operation into subtasks that can be performed in parallel by operating on even- and odd-numbered samples along each dimension of the data. It is shown that each subtask, which is essentially a set of multiply-accumulate operations, can be performed by employing a MAC-cell network consisting of a two-dimensional array of bit-wise adders. The second idea in enhancing the intra-stage parallelism is to maximally extend the bit-wise addition operations of this network horizontally through a suitable arrangement of bit-wise adders so as to minimize the delay of its critical path.udIn order to validate the proposed scheme, design and implementation of two specific examples of pipeline architectures for the 1-D and 2-D DWT computations are considered. The simulation results show that the pipeline architectures designed using the proposed scheme are able to operate at high clock frequencies, and their performances, in terms of the processing speed and area-time product, are superior to those of the architectures designed based on other schemes and utilizing similar or higher amount of hardware resources. Finally, the two pipeline architectures designed using the proposed scheme are implemented in FPGA. The test results of the FPGA implementations validate the feasibility and effectiveness of the proposed scheme for designing DWT pipeline architectures.ud
机译:由于离散小波变换(DWT)具有分解多种分辨率级别的信号的能力,因此已广泛应用于许多领域,例如图像压缩,语音分析和模式识别。由于此转换涉及大量的计算,因此用于快速计算转换的高效VLSI架构的设计已变得至关重要,尤其是对于实时应用程序和需要处理高速数据的应用程序而言。本文的目的是为DWT计算开发一种硬件资源高效的高速流水线架构设计方案。通过最大化工作频率并最小化DWT计算所需的时钟周期数,而几乎没有或没有硬件资源开销,可以实现高速目标。本文试图通过系统地利用离散小波变换的固有特性来增强级间和级内并行性来达到这一目标。 ud为了增强级间并行性,正在开展一项研究。用于确定DWT计算所需的流水线级数,以便同步其操作并有效利用其硬件资源。这是通过将与各种分辨率级别相关的计算负荷最佳地分配到管道的最佳阶段数来实现的。这项研究确定了使用两个流水线阶段,第一个执行第一分辨率级别的任务,第二个流水线执行一维DWT计算的所有其他分辨率级别的任务,以及使用三个流水线阶段的第一个分辨率级别的任务第二个执行第一和第二分辨率级别的任务,第二个执行2-D DWT计算的其余分辨率级别的任务,是开发一维和二维流水线架构的最佳选择,分别。阶段内并行性的增强基于两个主要思想。第一个想法是基于这样一个事实,即在每个连续的分辨率级别中,沿每个维度将输入数据抽取2倍,将过滤操作分解为可以通过对偶数和奇数进行并行操作来执行的子任务沿数据的每个维度编号的样本。示出了每个子任务,其本质上是一组乘法累加操作,可以通过采用由二维按位加法器阵列组成的MAC单元网络来执行。增强级内并行性的第二个想法是,通过适当的逐位加法器布置,最大程度地水平扩展该网络的逐位加法运算,以最小化其关键路径的延迟。考虑了所提出的方案,一维和二维DWT计算的流水线体系结构的两个特定示例的设计和实现。仿真结果表明,采用该方案设计的流水线体系结构能够在较高的时钟频率下运行,并且在处理速度和时域积方面,其性能均优于基于其他方案的体系结构。并利用相似或更高数量的硬件资源。最后,在FPGA中实现了使用提出的方案设计的两种流水线架构。 FPGA实现的测试结果验证了所提出的DWT流水线体系结构设计方案的可行性和有效性。 ud

著录项

  • 作者

    Zhang Cheng Jun;

  • 作者单位
  • 年度 2012
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号