首页> 外文OA文献 >Time domain simulation of airfoil flutter in the subsonic regime using fluid structure coupling through panel method
【2h】

Time domain simulation of airfoil flutter in the subsonic regime using fluid structure coupling through panel method

机译:使用面板方法的流体结构耦合在亚音速状态下机翼颤振的时域模拟

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This report presents a brief theory of aeroelastic flutter of airfoils and the relevant algorithm for the development of a computer code in FORTRAN for dynamic coupling of the airfoil structure, in the time domain, to a two-dimensional subsonic aerodynamic flow, so that the aeroelastic motion can be simulated in the time domain and the flutter boundary be determined for a typical rigid airfoil (of heave and pitch degrees of freedom) in the subsonic flow. The relevant computer code with fluid structure coupling has been developed at the Structural Technologies Division (STTD) for the purpose. The present work starts with a brief introduction to the fundamental concepts of airfoil flutter. The relevant equations of motion of the airfoil in subsonic airflow have been derived from the first principles. First, the classical method, based on the eigenvalue approach is used to solve the equations of motion and to determine the flutter boundary of the airfoil in the subsonic flow regime. A symmetric NACA 0012 airfoil profile of unit chord and width is chosen for analysis, with suitable spring stiffness and inertia values so that flutter instability can occur in the subsonic regime. Results from the panel code for steady flow conditions over the NACA 0012 confirm the validity of the code. For the purpose of time domain flutter simulation the panel code with the Prandtl-Glauert compressibility correction factor is suitably coupled to the airfoil through a Newmark's implicit time integration scheme. Unsteady motion in the fluid-structure system is numerically simulated through the code with small initial conditions. Flutter boundary is indicated by the critical free stream flow speed (and dynamic pressure) beyond which oscillation amplitudes show divergence in time. Flutter frequencies and flutter velocities obtained by the various methods are then compared, and good agreement is observed. Present analysis with a simple airfoil coupled to a 2D subsonic flow (simulated by the panel method) indicate that it is possible, in principle, to simulate flutter even in the transonic and supersonic regimes, using more sophisticated aerodynamic codes (Navier Stokes).
机译:本报告介绍了机翼气动弹性颤振的简要理论,以及在FORTRAN中开发计算机代码以使机翼结构在时域内动态耦合至二维亚音速气动流动的相关算法,从而实现了气动弹性可以在时域中模拟运动,并为亚音速流中的典型刚性翼型(升沉和俯仰自由度)确定颤振边界。为此,结构技术部(STTD)已开发了带有流体结构耦合的相关计算机代码。本工作首先简要介绍机翼颤振的基本概念。亚音速气流中翼型的相关运动方程式是从第一原理推导而来的。首先,基于特征值方法的经典方法用于求解运动方程,并确定亚音速流态下机翼的颤振边界。选择具有单位弦和宽度的对称NACA 0012翼型轮廓进行分析,并具有合适的弹簧刚度和惯性值,以便在亚音速状态下可能出现颤振不稳定性。面板代码在NACA 0012上稳定流量条件下的结果证实了该代码的有效性。出于时域颤动仿真的目的,具有Prandtl-Glauert可压缩性校正因子的面板代码通过Newmark的隐式时间积分方案适当地耦合到机翼。流体结构系统中的非定常运动是通过代码以较小的初始条件进行数值模拟的。颤振边界由临界自由流流速(和动态压力)指示,超过该极限时,振荡幅度会显示时间差异。然后比较了通过各种方法获得的颤振频率和颤振速度,并观察到了很好的一致性。当前的简单翼型与二维亚音速流耦合(通过面板方法模拟)的分析表明,原则上,甚至可以在跨音速和超音速状态下使用更复杂的空气动力学代码(Navier Stokes)来模拟颤动。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号